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A ROBUST METHOD OF ESTIMATING COVARIANCE MATRIX
IN MULTIVARIATE DATA ANALYSIS
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Abstract

We proposed a robust method of estimating covaeianatrix in multivariate data set. The goal
is to compare the proposed method with the most wigs#d robust methods (Minimum Volume EI-
lipsoid and Minimum Covariance Determinant) and tlassical method (MLE) in detection of
outliers at different levels and magnitude of @i The proposed robust method competes favoura-
bly well with both MVE and MCD and performed bettarttany of the two methods in detection of

single or fewer outliers especially for small samgilee and when the magnitude of outliers is redativ
ly small.

Keywords: Covariance Matrix, Minimum Volume Ellipsoid (MVEMinimum Covariance De-
terminant (MCD), Mahalanobis Distance, Optimalititenia.
JEL classification: C01, C10

1. Introduction

Let X ={X;,X,,X3,—,—,—, X.,} be a set of m points @ ", wherex., i =1, 2, 3, ,

,m, are independent and identically distributedtivatiate normalN, (£, %) . The usual

Maximum Likelihood Estimate (MLE) method of estiimaf 1 and?. are the sample mean
vector and sample covariance matixand S respectively as;
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Covariance matrix plays a prominent role in muliate data analysis. It measures the
spread of the individual variables as well as |lefeihter-relationship (intercorelation) that
may exist between pairs of the variables in thetivariate data. The statistic is used in
many multivariate techniques as a measure of sparddntercorrelation among variables.
Such techniques include multivariate regression ehoBrincipal Component and Factor
Analyses, Canonical Correlation, and Linear Disgnant and even in Multivariate Statisti-
cal Process Control (MSPC). It is used in obtainingltivariate control charts such as
Hotelling T? chart, Multivariate Exponential Moving Weighted évage (MEMWA) chart,
and Multivariate Cumulative Sum (MCUSUM) chart.

It is well known that the Maximum Likelihood Estitea(MLE) method can be very
sensitive to deviations from the assumptions madéhe data, in particular, to unexpected
outliers in the data (Vandev and Neykov 2000). Vercome this problem, many robust al-
ternatives to Maximum Likelihood Estimator (MLE)J&abeen developed in recent years.
All the methods converged on tackling the probledmobust estimation by finding a suffi-
ciently large subset of uncontaminated (free ofiens) of the data. Such subset will be
mainly elements of the true population and estiomeits then based on this subset.

When the estimate of the covariance matrix of atiwariate data is not robust (Bi-
ased) it often times renders the technique or tiadyais it is used for to be inconsistent and
in most cases found to be unreliable. For instaimc®ultivariate Control chart like Hotel-
ling T? chart, where the presence of multiple outliers efflect the estimation of the
covariance matrix using Maximum Likelihood Estinaaiti(MLE) method to the extent that
all the outliers will go undetected by the charbfyas 2003). The same effect can be ex-
perienced in other analyses like Principal Componamd Factor analysis and other
multivariate techniques.

Outliers can heavily influence the estimation of ttovariance matrix, and subse-
quently the parameters or statistics that are rmeéalde derived from it. Hence a robust
estimate of the covariance matrix that will notdfected by outliers is required to obtain
valid and reliable results (Hubert and Engelen,7200here have been many robust meth-
ods of estimating the covariance matrix of a maltiate data. Such methods include
Minimum Volume Ellipsoid (MVE), Minimum Covariancddeterminant (MCD), S-
Estimator, M-Estimator and Orthogonalized GnanddesKettering (OGK) methods.

This paper gives a brief overview of the most wydesed methods (Minimum Volume
Ellipsoid and Minimum Covariance Determinant) atebantroduces our robust estimation
method. We compared our robust method with the mvethods based on both simulated
and real life multivariate data in detection oflmut as bases of comparison.

2. Robust Methods

Minimum Volume Ellipsoid (MVE)

The Minimum Volume Ellipsoid (MVE) estimator is dir proposed by Rousseeuw
(1984). It has been studied extensively for nontwdrthart settings and frequently used in
detection of multivariate outliers. The estimatisgeks to find the ellipsoid of minimum
volume that covers a subset of at least h datagaiihe subset of size h is called halfset be-
cause h is often chosen to be just more than fisiffeom data points. The location estimator
is the geometrical center of the ellipsoid anddkémator of the variance-covariance matrix
defining the ellipsoid itself multiplied by an appriate constant to ensure consistency
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(Rousseeuw and van Zomeren (1990), Rousseeuw andoraeren (1991), and Rocke and
Woodruff (1998)).

Assuming that we have a multivariate data set @oinge m samplegx, OO P}™, .
In order to solve the MVE problem we need to obtaipxp positive definite matrix
COOPPand the center of the ellipsoid t so as to maxim@et(C™)subject to

(x, —t)TC™*(x —t) < p, (Titterington, 1975).

The MVE for the data se{txi}i":lmust go through at least p+1 and at most h support

vectors. Thus the MVE estimates of the location dispersion do not correspond to the
sample mean vector and sample variance-covariaatexmf a particular halfset. For more
detailed discussion on MVE see Daves (1987), Lopwrad Rousseeuw (1991), Tittering-
ton (1975) and (Agullo, 1996).

Minimum Covariance Determinant (MCD)

An alternative high breakdown estimation procedarthe MVE is an estimator based
on the Minimum Covariance Determinant (MCD), whighs first proposed by Rousseeuw
(1984). It is obtained by finding the halfset of Itiwariate data points that gives the mini-
mum value of the determinant of the covariance imatte resulting estimator of location
is the sample mean vector of the points that ihHitset and the estimator of the dispersion
is the sample covariance matrix of the points rpliétd by an appropriate constant to ensure
consistency just as was done for MVE.

The MCD estimators are intuitively appealing beeaasmall value of the determinant
corresponds to near linear dependencies of theinddke p-dimensional space. That is be-
cause a small determinant corresponds to a snggdhealue which suggests a near linear
dependency that suggests that there is a grougintspthat are similar to each other (Jensen
et al. 2002).

Let p < m/2, let X :{xl,xz,xs,—,—,—,xp} be a set of n points [ . Let h be a
natural number, m/2 < h < m. The Minimum Covariabegerminant problem for X and h,
MCD for short, is the problem to find an h-elemeses X" ={X, X ,,—=,—, %} 0 X

such that det(® is minimal overall h-element sets. The empiripabariance matrix C(,
with minimal determinant yields a robust estimatef$he scatter matrix, with S = S{X=
Co C(X™), where Gis a suitably chosen constant to achieve consigtéifee estimate of the
location parameter is given as;

1
t=t(X") == ZX of all the h points in the set"XThe pair (t, S) is called the MCD-
xax?
estimate with respect to X.

3. The Proposed Robust Method (PRM)
Given a p-dimensional multivariate normal da,, with m observc';ltlon{axi}i:l

Our interest is to obtain a subset{oq}in:1 of size k = p+1 that will satisfy some optimality
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criteria. Therefore we sample without replacemesample of size k from m, this will give

X}Pfl. If we denote each sub-

C;ll possible subsets of size pﬂnsz’_’_’_’ Xips1r X =1

sethyd;,j=1,2,,, C,.

For each] i we estimate the variance-covariance matrix, C
1 _ -
C, = (Xj ~ X )(Xj X )T
p+1
And for each of the pxp matf¥;, the characteristic roots or eigenvalues

€18, g are obtained and from such eigenvalues we calctlatdollowing op-
timality criteria;
Ea = The Minimum of the minimum eigenvalueg, = min{mine }

Ep = The Minimum of the product of the eigenvalug. = min{lﬂll e.}

-1
En = The Minimum of the harmonic mean of the eigeneal g _ min{il}
i i1 6
The objective is to obtain data points (p+1) suwdt its variance-covariance matrix
will satisfy all the three optimality criteria. Sucovariance matrix will be inflated or de-
flated to accommodate good data points among tkerebd data. The resulting variance-
covariance matrix is then multiplied by a consfantconsistency.

4. The algorithm for obtaining the proposed method

Let X ={X;,X,,X;3,—,—,—, X} be a set of m points [d ". Let h be a natural number
such that% <h<m.

1. We select p+1 data poin{S(lv X5, = Xp+1}. that satisfy the three optimality crite-

ria.
2. Use such p+1 data points to obtain the center aridnce-covariance matrix;

X = 1 in*andS: 1
p+1iz p+1

3. Calculate the mahalanobis distances for all thébsevations using. and S,

As follows; d2 = (x - %.)S™*(x-x. )’

(X* - X )(X p )T respectively.

4. The di2 (i=1,23,,, , ,m)is arranged in ordémagnitude from the least to the
highest.
5. Thefirstp+ (j=2,3,4, , , , h-p-1) distzes are selected and their corresponding

sample units (points) are used to compute the Kexand S, as follows;
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X = 1 > x. ands = 1 ~(x =% )(x. -x.)" respectively.
p+]i= p+]

6. The newset ofX, and S. are then used to obtain the mahalanobis distdoced the
observations.

7. Steps 4,5, and 6 are repeated until the numbenitf selected i, = m+p+l

8. The Proposed robust estimators are then given ig,r'bp :%pr and
i=1
_1 - o \T _
Sorop —E(X* - X. )(X* —X*) , where X, ={X, X,,—,—,=, X, }.

4.1. Simulation

For the purpose of comparing the proposed robusgiadewith other methods, Monte
Carlo simulation is adopted to generate the selsvafriate normal samples. Also, the same
procedure is used to obtain the upper control $irfot all the four methods under compari-
son. A set of m = 30 observations was generatad & bivariate normal distribution. The
proposed robust method was compared with the ¢inee methods (Minimum Volume EI-
lipsoid, Minimum Covariance Determinant and The SSlaal). We assume the Non-

I
centrality ParameteinCp= (,u—,uo) Z_l(,u—,uo) to be the measure of severity of a
shift to the out-of-control mean vectgr from the in-control mean vectpr . Because the

signal probability depends on the value of the pentrality parameter but not on the in-
control mean vectog/  or the variance-covariance matkx we made use, without loss of

generality, the zero vector f#o and the identity matrix of order twg, BsX.

The control limits were determined from 5000 sintiolas, such that all the methods
considered had overall false alarm probability €50 The limits were obtained by generat-

ing 5000 data set for m and p (m = 30 and p = R Hotelling-F statistic,Tiz, were

computed fori=1, 2,3, , , , m. The maximuatue was recorded and the"9Bercentile

of the maximum values of the Hotelling’s>-Torj=1,2,3, , , , 5000 was taken to e t
Upper Control Limit (UCL) for the control chart. €hvalues obtained were 9.686, 38.166,
33.917 and 63.326 for the Classical, MVE, MCD amdp®sed methods respectively. The
Lower Control Limit is always set to zero.

Once the control limits are set, k (k = 1, 3, 5 &dutliers are randomly generated
among the m (m = 30) observations. To generat®titiéers, the process mean vector was
changed from p =quto p = | to obtain a given value of non-centrality parameféhe
charts were compared by estimating the probalfitgbtaining a valid signal. These prob-
abilities were calculated from 1000 replicationkeTillustrations were made for k = 1, 3, 5
and 7 as shown in Tables 4.1 to 4.4.

Figures 4.1 to 4.4 show the estimated signal pritibab for different non-centrality
parameter values (ncp = 5, 10, 15, 20, 25 and\8®gn there is only one outlier, it can be
seen that the control chart based on Classicalodéatheffective in detecting the outlier than
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the other three methods. Figure 4.1 shows theodlir@assical method reaches a probability
value equal or greater than 0.9 when the non-dégtgarameter is 30. Though the other
methods are less powerful for a single outlier thaty still signal that there exist outliers
with a reasonable probability with the proposedhodthaving an edge over the other two
methods (MVE and MCD).

However, for multiple outliers, the Classical Caht€hart performed poorly in detect-
ing outliers. The method becomes worst when thezebaor 7 outliers in the data set. For
instance, when there were 3 outliers and the notra@y parameter is 20, the estimated
signal probability was only 0.1600 for the Claski€Cantrol Chart while the signal prob-
abilities for MVE, MCD and Proposed Control Chargre 0.423, 0.413 and 0.417
respectively. For k = 5 or 7 outliers the marginvween the Classical and the other control
charts became more pronounced. For instance, when/kand non-centrality parameter
value is 30, the signal probability value for CiaasChart is 0.003 while MVE, MCD and
Proposed Control Chart have signal probability galef 0.261, 0.234 and 0.244 respec-
tively.

Generally, from the control charts, it can be irddrthat for all the methods, as the
number of outliers increases so the signal prolghilecreases for a given sample size.
Also, for all the control charts except the Claskithart, as the value of non-centrality pa-
rameter increases, the signal probability valuesemse. As a result of this, it can be
inferred that the Classical Control Chart is optied for none or single outlier while the
other robust methods were optimized for detectindtipie outliers, usually the number of
outliers should be less than m-p-1/2 where p imtimaber of variables and m is the number
of observations (Vargas, 2003).

Table 4.1 gives the signal probability of the fonethods for a single outlier for vary-
ing size of non-centrality parameter. For NCP valti®, the classical chart has the highest
probability value of 0.1100 closely followed by theposed chart with probability of 0.075
while MCD and MVE have probability values of 0.0580d 0.0450 respectively. When the
NCP is 30, the signal probability values for ak tfour charts are 0.9400, 0.8250, 0.7600
and 0.7300 for classical, proposed, MVE and MCDrtsh@spectively.

Table 4.1. The signal probability when there is ondier.

METHODS
NCP Classical MVE MVD Proposed
5 0.1100 0.0450 0.0550 0.0750
10 0.4100 0.1300 0.1400 0.2500
15 0.5500 0.3000 0.3100 0.4200
20 0.7200 0.4200 0.4000 0.5100
25 0.8100 0.5300 0.5500 0.6750
30 0.9400 0.7600 0.7300 0.8250
Table 4.2. The signal probability when there areu8iers.
METHODS
NCP Classical MVE MVD Proposed
5 0.0430 0.0750 0.0285 0.0400
10 0.1000 0.0870 0.0930 0.1330
15 0.1200 0.2130 0.2070 0.2470
20 0.1600 0.3350 0.3450 0.3550
25 0.1600 0.4670 0.4450 0.4300
30 0.1900 0.5830 0.5770 0.5270
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Table 4.3 The signal probability when there are Hiers.

METHODS
NCP Classical MVE MVD Proposed
5 0.0100 0.0080 0.0080 0.0240
10 0.0110 0.0420 0.036 0.0560
15 0.0100 0.1180 0.0980 0.1120
20 0.0200 0.2280 0.2140 0.2240
25 0.0180 0.3580 0.3500 0.2940
30 0.0180 0.3660 0.3700 0.3080
Table 4.4 The signal probability when there are Wiers.
METHODS
NCP Classical MVE MVD Proposed
5 0.0100 0.0165 0.0170 0.0210
10 0.0120 0.0450 0.4800 0.0470
15 0.0070 0.0900 0.0840 0.0840
20 0.0100 0.1560 0.1470 0.1300
25 0.0100 0.1980 0.2000 0.1820
30 0.0030 0.2610 0.2340 0.1960
7 z
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Fig 4.1: Signal prob when there is one outlier
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Fig.4: Signal prob. when there are 7 outliers

4.2. Real life data illustration

We consider the data presented in Quesenberry 2082 data consists of 11 quality
characteristics (variables) measured on 30 produmts a production process. The first two
variables are considered and they are reproducedlimns 2 and 3 of Table 4.5. The two
variables are used to compare the four methodsonstoucting Hotelling’s-T Control
Chart. The sample mean vector and covariance mtrixhe unmodified data (Classical
method) of the Table 4.5 are;

- 0.5415
XCIassica|:
59.8155
s - 0.002203 0.00039
lassical 0.000399 0.95506

The location and covariance matrices for the twausd methods (MVE and MCD) us-
ing R- Language are given as follows;
Location and Scatter matrix for MVE
0.5419}

X, o =
M {60.0200
[0.002360 0.011328}

MVE

0.011328 0.257772

Location and Scatter matrix for MCD
0.5474}

weo = {59.9927
[ 0001943 -0.00070
" | -0.000705 0.504607

CD

The mean vector and covariance matrix of the daaguthe proposed robust method
(PRM) are as follows;
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< .| 05266
Proposed 60.2264

0.002146 0.0ZZOSj

SProposed = |:0022083 0.38735

T; ,ZMCD T ,ZMVE and T’ based

The values of Hotelling’s“Tstatistics, T, i Proposed

i,usual’

on the Classical, MCD, MVE and Proposed robust oashrespectively are presented in
columns 4, 5, 6 and 7 of Table 4.5 in that order.

Comparing the values obtained from the four siaishgainst their respective upper
control limits, which are 9.686, 33.917, 38.166d &3.326 for the Classical, MCD, MVE,
and Proposed methods respectively, it was fouridothig MCD control chart did not signal
the second observation as outlier, the other thmenods signaled the second observation as
an outlier. Figures 4.5a through 4.5d showed thétivatiate control charts for the four
methods; Classical, MVE, MCD and PRM charts respelst In MCD — control chart none
of the 30 observations is above the upper conimt (Fig. 4.5¢). The other control charts
indicated the second observation to be an outhiet-¢f-control point).

We arbitrarily introduced two more outlying obsdrfeas into the data, the observa-
tions 14 and 24 were modified to (0.880, 65.230) &980, 66.080) respectively. The
resulting Hotelling’s-T statistics for the four methods together with tla¢a are presented
in Table 4.6. The corresponding multivariate contioarts are as shown in Figures 4.6a
through 4.6d for Classical, MVE, MCD and PRM regpety. From Table 4.6, while the
Classical, MCD and MVE control charts indicated tpaints as outliers, the proposed ro-
bust method (PRM) chart signals all the three nlagwns (points 2, 14 and 24) as outliers.
The classical chart indicated observations 2 and<2dutlying points while both MCD and
MVE indicated observations 14 and 24 as outliefgufies 4.6a through 4.6d gave clearer
details.

The number of outliers was increased to 5 by mantjffyobservations 18 and 28 to
(0.350, 53.180) and (0.410, 50.470) respectiveladdition to the three existing outlying
points in the data set. The multivariate statistibsained from the four methods together
with the data set are shown in Table 4.7. Frontdbée, the two robust methods, MCD and
MVE, identified all the outliers (observations 14, 24 and 28) except the second observa-
tion as outliers. The classical chart identifiedyotwo points, observations 24 and 28 as
outlying points, while the proposed robust chaetitfied all the outlying points as outliers.
Figures 4.7b and 4.7c are MVE and MCD control chagspectively showing the four ob-
servations above the upper control limits. Figuté& and 4.7d are the control charts for
Classical and PRM showing two and four points altbeeupper control limit respectively.

Finally, the number of outlying points was furtliecreased to 7 with the modification
of observations 8 and 20 to (0.400, 50.550) andl@).62.455) respectively. Table 4.8 gave
the multivariate statistics for all the four cordtaharts. The Classical control chart’s per-
formance, as shown in Figure 4.8a, was so poor ithaan only identified only two
observations as outlying points out of seven ougtlie the data. Both MVE and MCD con-
trol charts given in Figures 4.8b and 4.8c, perfminbetter by identifying all the outlying
observations except the second observation aemutiThe PRM chart performed as such
by identifying all the seven outliers in the da¢h except the twentieth observation.
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Table 4.5: Data set and Hotelling’:?—?.'tatistic using the Classical, MCD, MVE
and the Proposed Robust Method (PRM) when thenelysame (1) outlier
No. X4 X, Classical MCD MVE Proposed
1 0.567 60.558 0.8066 0.8463 1.1238 0.8038
2 0.538 56.303 12.9755 27.0895 67.2475 102.0470
3 0.530 59.524 0.1373 0.6041 1.0070 3.4001
4 0.562 61.102 1.8375 2.5720 4,9464 2.2175
5 0.483 59.834 1.5697 2.2028 1.5167, 0.9069
6 0.525 60.228 0.3301 0.3615 0.5323 0.0033
7 0.556 60.756 0.9772 1.2021 2.2802 0.7247
8 0.586 59.823 0.9045 1.8130 1.6442 8.0729
9 0.547 60.153 0.1269 0.0509 0.0689 0.6943
10 0.531 60.640 0.8008 0.9546 2.2730 0.8574
11 0.581 59.785 0.7192 0.6552 1.5253 7.6383
12 0.585 59.675 0.9097 0.9091 2.2835 9.8820
13 0.540 60.489 0.4835 0.5115 1.1256 0.1808
14 0.458 61.067 5.2413 6.2687 13.3162 17.1425
15 0.554 59.788 0.0736 0.1033 0.4754 3.5894
16 0.469 58.640 3.5357 6.9488 7.4692 7.7120
17 0.471 59.574 2.2696 3.4022 2.1857 1.4820
18 0.457 59.718 3.2442 4.3967 3.1098 2.5300
19 0.565 60.901 1.3981 1.8172 3.1419 1.1747
20 0.664 60.180 6.8326 7.0948 7.2069 22.1173
21 0.600 60.493 1.8978 1.9560 1.6148 4.0007
22 0.586 58.370 3.3564 5.8965 17.8616 39.6793
23 0.567 60.216 0.4275 0.3020 0.2946 1.8933
24 0.496 60.214 1.1838 1.4432 1.7373 1.0097|
25 0.485 59.500 1.4968 2.5331 1.6721] 1.3624
26 0.573 60.052 0.4843 0.3454 0.4769 3.6558
27 0.520 59.501 0.2899 0.8866 1.0456 2.7191]
28 0.556 58.476 2.0635 4.5803 12.8536 26.7262
29 0.539 58.666 1.3860 3.5429 8.8320 17.8671
30 0.554 60.239 0.2404 0.1447 0.1892 0.8019
The bold numbers indicate outlying points
Table 4.6: Data set and Hotelling’ $-3tatistic using the Classical, MCD, MVE
and the Proposed Robust Method (PRM) when theréhage (3) outliers
No. X1 X, Classical MCD MVE Proposed
1 0.567 60.558 0.2156 0.8208 0.9639 0.6835
2 0.538 56.303 11.1453 26.9371 25.7786 67.2619
3 0.530 59.524 0.1546 0.5949 0.5530 1.6341
4 0.562 61.102 1.1349 2.7306 2.7151 2.0714
5 0.483 59.834 1.4296 3.0245 3.7622 2.0271
6 0.525 60.228 0.6717 0.7466 0.7364 0.1661
7 0.556 60.756 0.6643 1.3542 1.3345 0.7574
8 0.586 59.823 0.2773 0.7474 1.3182 5.7024
9 0.547 60.153 0.1618 0.1293 0.1029 0.2316
10 0.531 60.640 1.1820 1.4730 1.3954 1.0863
11 0.581 59.785 0.2384 0.5831 1.0330 5.2204
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12 0.585 59.675 0.4266 0.8712 1.4140 6.8552
13 0.540 60.489 0.6525 0.8012 0.7295 0.2732
14 0.880 65.230 9.0509 107.1500 135.1170 83.6520
15 0.554 59.788 0.0416 0.0503 0.0760 1.9257
16 0.469 58.640 0.9293 6.8119 7.8500 5.5945
17 0.471 59.574 1.4702 4.1925 5.2996 2.7493
18 0.457 59.718 2.3397 5.6685 7.3243 4.7841
19 0.565 60.901 0.6842 1.8775 1.9409 1.1879
20 0.664 60.180 2.1596 7.5567 11.6930 20.7586
21 0.600 60.493 0.0709 1.7452 2.6869 3.6661
22 0.586 58.370 3.7556 6.3072 6.6884 27.0517
23 0.567 60.216 0.0181 0.2386 0.4118 1.1943
24 0.980 66.080 14.6257 165.3657 212.9290 133.3725
25 0.485 59.500 0.9127 2.9998 3.6643 1.6948
26 0.573 60.052 0.0129 0.2515 0.5337 2.4067
27 0.520 59.501 0.2341 0.9372 0.9592 1.3111
28 0.556 58.476 2.0733 4.4845 4.3582 17.017¢
29 0.539 58.666 1.1358 3.3007 3.1253 10.7904
30 0.554 60.239 0.1306 0.1814 0.1976 0.3682
The bold numbers indicate outlying points
Table 4.7: Data set and Hotelling’ $-3tatistic using the Classical, MCD, MVE
and the Proposed Robust Method (PRM) when ther¢S)veutliers

No. Xy X, Classical MCD MVE Proposed

1 0.567 60.558 0.2362 0.7804 0.9022 0.6835
2 0.538 56.303 2.9413 33.0764 31.6581 67.2629

3 0.530 59.524 0.1635 0.7412 0.6812 1.6341
4 0.562 61.102 0.7418 2.8987 2.8360 2.0714
5 0.483 59.834 1.4570 2.8809 3.5639 2.0271
6 0.525 60.228 0.6809 0.6788 0.6677 0.1661
7 0.556 60.756 0.5279 1.3746 1.3344 0.7574
8 0.586 59.823 0.0634 0.8143 1.3980 5.7024
9 0.547 60.153 0.2389 0.0890 0.0631 0.2316
10 0.531 60.640 0.9476 1.4706 1.3952 1.0863
11 0.581 59.785 0.0391 0.6687 1.1331 5.2204
12 0.585 59.675 0.0902 1.0170 1.5810 6.8552
13 0.540 60.489 0.5938 0.7650 0.6919 0.2732
14 0.880 65.230 7.4386 110.1994 134.3937 83.6520
15 0.554 59.788 0.0371 0.1161 0.1474 1.9257
16 0.469 58.640 0.8502 7.3734 8.1688 5.5945
17 0.471 59.574 1.5701 4.0685 5.0728 2.7493
18 0.350 53.180 5.4599 121.7731 123.7536 126.8210
19 0.565 60.901 0.5035 1.9377 1.9621 1.1879
20 0.664 60.180 1.4118 7.2860 11.3355 20.7586
21 0.600 60.493 0.1057 1.6383 2.5304 3.6661
22 0.586 58.370 1.0703 7.8940 8.3402 27.0517
23 0.567 60.216 0.0813 0.1938 0.3622 1.1943
24 0.980 66.080 13.4982 168.1998 210.0040 133.3725
25 0.485 59.500 1.0472 2.9802 3.5583 1.6948
26 0.573 60.052 0.0214 0.2364 0.5199 2.4067
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27 0.520 59.501 0.2852 1.0646 1.0547 1.3111
28 0.410 50.470 15.5514 218.4728 211.2181 310.3428
29 0.539 58.666 0.1453 4.2697 4.0543 10.7904
30 0.554 60.239 0.2011 0.1357 0.1501 0.3682
The bold numbers indicate outlying points
Table 4.8: Data set and Hotelling’ $-3tatistic using the Classical, MCD, MVE
and the Proposed Robust Method (PRM) when thersearen (7) outliers

No. X4 X5 Classical MCD MVE Proposed

1 0.567 60.558 0.2333 0.8913 0.8913 0.6835

2 0.538 56.303 1.8549 30.6481 30.6481 67.2629

3 0.530 59.524 0.1823 0.6299 0.6299 1.6341
4 0.562 61.102 0.6502 2.6878 2.6878 2.0714

5 0.483 59.834 1.4218 3.4235 3.4235 2.0271

6 0.525 60.228 0.6607 0.5959 0.5959 0.1661

7 0.556 60.756 0.4854 1.2566 1.2566 0.7574

8 0.400 50.550 9.3145 199.6315 199.6315 298.0955

9 0.547 60.153 0.2491 0.0507 0.0507 0.2316
10 0.531 60.640 0.8746 1.2905 1.2905 1.0863
11 0.581 59.785 0.0369 1.2776 1.2776 5.2204
12 0.585 59.675 0.0717 1.7524 1.7524 6.8552
13 0.540 60.489 0.5627 0.6248 0.6248 0.2732
14 0.880 65.230 7.2106 131.8779 131.8779 83.6520
15 0.554 59.788 0.0547 0.1806 0.1806 1.9257
16 0.469 58.640 0.8629 7.7875 7.7875 5.5945
17 0.471 59.574 1.5499 4.8920 4.8920 2.7493
18 0.350 53.180 3.7306 118.1500 118.1500 126.8210
19 0.565 60.901 0.4548 1.8720 1.8720 1.1879
20 0.715 62.455 1.6623 32.0042 32.0042 21.5871
21 0.600 60.493 0.1221 2.6479 2.6479 3.6661
22 0.586 58.370 0.7348 8.4610 8.4610 27.0517
23 0.567 60.216 0.0983 0.4057 0.4057 1.1943
24 0.980 66.080 13.3108 206.7971 206.7971 133.3725
25 0.485 59.500 1.0515 3.3899 3.3899 1.6948
26 0.573 60.052 0.0389 0.6052 0.6052 2.4067
27 0.520 59.501 0.3053 0.9708 0.9708 1.3111
28 0.410 50.470 9.9472 201.9369 201.9369 310.3428
29 0.539 58.666 0.0560 3.9447 3.9447 10.7904
30 0.554 60.239 0.2110 0.1494 0.1494 0.3682

The bold numbers indicate outlying points
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5. Conclusions

The proposed robust method empirically compete deataly well with the most
widely used robust methods (MVE and MCD) in detegtbutliers in the presence of multi-
ple outliers The proposed method is better in detgooutliers than the MVE and MCD
especially when there are fewer or single outlierthe data set. As a result of the above
points, the proposed method is highly recommendeédmithere is no information regards
the number of outliers in a multivariate data set.

The proposed robust method of estimating the vedamvariance matrix of multivariate
data combines the efficiencies of both classical eristing robust methods (MVE and
MCD) of estimation. The classical method of estioratis most efficient in multivariate
analysis when there is no or only a single outlibile on the other hand the existing robust
methods (MVE and MCD) are more efficient in thegmece of multiple outliers in a multi-
variate data set.

The proposed robust method (PRM) performed bettédmaore efficient in the two ex-
treme cases outlined above. While existing robusthods are less efficient where there is
no or only one outlier the proposed robust metlsoleitter. Likewise when there are multi-
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ple outliers, the classical method becomes lessiaft while the proposed robust method
was found to be efficient.

Generally, since the information on whether a raaliate data set contains outliers or
not and even the number of outliers, may not béhetdisposal of the analyst. It is highly
recommended to use the proposed robust methodtimati®g the variance-covariance
since it will combine both efficiencies of both s$ical and other robust methods in the
presence or otherwise of multiple outliers. Extensf further research to analytical ap-
proach has also been opened.
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