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Abstract  

We proposed a robust method of estimating covariance matrix in multivariate data set. The goal 
is to compare the proposed method with the most widely used robust methods (Minimum Volume El-
lipsoid and Minimum Covariance Determinant) and the classical method (MLE) in detection of 
outliers at different levels and magnitude of outliers. The proposed robust method competes favoura-
bly well with both MVE and MCD and performed better than any of the two methods in detection of 
single or fewer outliers especially for small sample size and when the magnitude of outliers is relative-
ly small. 
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1. Introduction 

Let },,,,,,{ 321 mxxxxX −−−= be a set of m points in pℜ , where ix , i = 1, 2, 3, ,  

,m, are independent and identically distributed multivariate normal ),( ΣµPN . The usual 

Maximum Likelihood Estimate (MLE) method of estimating µ and ∑ are the sample mean 
vector and sample covariance matrix x and S respectively as; 
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Covariance matrix plays a prominent role in multivariate data analysis. It measures the 
spread of the individual variables as well as level of inter-relationship (intercorelation) that 
may exist between pairs of the variables in the multivariate data. The statistic is used in 
many multivariate techniques as a measure of spread and intercorrelation among variables. 
Such techniques include multivariate regression model, Principal Component and Factor 
Analyses, Canonical Correlation, and Linear Discriminant and even in Multivariate Statisti-
cal Process Control (MSPC). It is used in obtaining multivariate control charts such as 
Hotelling T2 chart, Multivariate Exponential Moving Weighted Average (MEMWA) chart, 
and Multivariate Cumulative Sum (MCUSUM) chart. 

It is well known that the Maximum Likelihood Estimate (MLE) method can be very 
sensitive to deviations from the assumptions made on the data, in particular, to unexpected 
outliers in the data (Vandev and Neykov 2000). To overcome this problem, many robust al-
ternatives to Maximum Likelihood Estimator (MLE) have been developed in recent years. 
All the methods converged on tackling the problem of robust estimation by finding a suffi-
ciently large subset of uncontaminated (free of outliers) of the data. Such subset will be 
mainly elements of the true population and estimation is then based on this subset. 

When the estimate of the covariance matrix of a multivariate data is not robust (Bi-
ased) it often times renders the technique or the analysis it is used for to be inconsistent and 
in most cases found to be unreliable. For instance, in Multivariate Control chart like Hotel-
ling T2 chart, where the presence of multiple outliers can affect the estimation of the 
covariance matrix using Maximum Likelihood Estimation (MLE) method to the extent that 
all the outliers will go undetected by the chart (Vargas 2003). The same effect can be ex-
perienced in other analyses like Principal Component and Factor analysis and other 
multivariate techniques. 

Outliers can heavily influence the estimation of the covariance matrix ∑ and subse-
quently the parameters or statistics that are needed to be derived from it. Hence a robust 
estimate of the covariance matrix that will not be affected by outliers is required to obtain 
valid and reliable results (Hubert and Engelen, 2007). There have been many robust meth-
ods of estimating the covariance matrix of a multivariate data. Such methods include 
Minimum Volume Ellipsoid (MVE), Minimum Covariance Determinant (MCD), S-
Estimator, M-Estimator and Orthogonalized Gnanadesikan-Kettering (OGK) methods. 

This paper gives a brief overview of the most widely used methods (Minimum Volume 
Ellipsoid and Minimum Covariance Determinant) and also introduces our robust estimation 
method. We compared our robust method with the two methods based on both simulated 
and real life multivariate data in detection of outliers as bases of comparison. 

2. Robust Methods 

Minimum Volume Ellipsoid (MVE) 

The Minimum Volume Ellipsoid (MVE) estimator is first proposed by Rousseeuw 
(1984). It has been studied extensively for non-control chart settings and frequently used in 
detection of multivariate outliers. The estimation seeks to find the ellipsoid of minimum 
volume that covers a subset of at least h data points. The subset of size h is called halfset be-
cause h is often chosen to be just more than half of the m data points. The location estimator 
is the geometrical center of the ellipsoid and the estimator of the variance-covariance matrix 
defining the ellipsoid itself multiplied by an appropriate constant to ensure consistency 
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(Rousseeuw and van Zomeren (1990), Rousseeuw and van Zomeren (1991), and Rocke and 
Woodruff (1998)). 

Assuming that we have a multivariate data set containing m samples, m
i

p
ix 1}{ =ℜ∈ . 

In order to solve the MVE problem we need to obtain a pxp positive definite matrix 
pxpC ℜ∈ and the center of the ellipsoid t so as to maximize )det( 1−C subject to 

ptxCtx i
T

i ≤−− − )()( 1 , (Titterington, 1975). 

The MVE for the data set m
iix 1}{ = must go through at least p+1 and at most h support 

vectors. Thus the MVE estimates of the location and dispersion do not correspond to the 
sample mean vector and sample variance-covariance matrix of a particular halfset. For more 
detailed discussion on MVE see Daves (1987), Lopuhaa and Rousseeuw (1991), Tittering-
ton (1975) and (Agullo, 1996). 

Minimum Covariance Determinant (MCD) 

An alternative high breakdown estimation procedure to the MVE is an estimator based 
on the Minimum Covariance Determinant (MCD), which was first proposed by Rousseeuw 
(1984). It is obtained by finding the halfset of multivariate data points that gives the mini-
mum value of the determinant of the covariance matrix. The resulting estimator of location 
is the sample mean vector of the points that is the halfset and the estimator of the dispersion 
is the sample covariance matrix of the points multiplied by an appropriate constant to ensure 
consistency just as was done for MVE. 

The MCD estimators are intuitively appealing because a small value of the determinant 
corresponds to near linear dependencies of the data in the p-dimensional space. That is be-
cause a small determinant corresponds to a small eigenvalue which suggests a near linear 
dependency that suggests that there is a group of points that are similar to each other (Jensen 
et al. 2002). 

Let p < m/2, let },,,,,,{ 321 pxxxxX −−−= be a set of n points in pℜ . Let h be a 

natural number, m/2 < h < m. The Minimum Covariance Determinant problem for X and h, 

MCD for short, is the problem to find an h-elements set  XxxxX ihii
h ∈−−−= },,,,,{ 21  

such that det(Xh) is minimal overall h-element sets. The empirical covariance matrix C(Xh), 
with minimal determinant yields a robust estimate S of the scatter matrix, with S = S(Xh) = 
C0 C(Xh), where C0 is a suitably chosen constant to achieve consistency. The estimate of the 
location parameter is given as;  

∑
∈
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Xx

h x
h

Xtt  of all the h points in the set Xh. The pair (t, S) is called the MCD-

estimate with respect to X. 

3. The Proposed Robust Method (PRM) 

Given a p-dimensional multivariate normal datapxmX with m observations{ }m

iix 1= . 

Our interest is to obtain a subset of { }m

iix 1=  of size k = p+1 that will satisfy some optimality 
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criteria. Therefore we sample without replacement a sample of size k from m, this will give 
m
pC 1+  possible subsets of size p+1, 12,1 ,,,, +−−− jpjj xxx , { } 1

1

+
=

p

jjx . If we denote each sub-

set by jJ , j = 1, 2,  ,  ,  , m
pC 1+ . 

For each jJ , we estimate the variance-covariance matrix, CJ; 
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And for each of the pxp matrixJC , the characteristic roots or eigenvalues 

jpjj eee ,,,,2,1 −−− are obtained and from such eigenvalues we calculate the following op-

timality criteria; 
EA = The Minimum of the minimum eigenvalues. { }iA eE minmin=  

EP = The Minimum of the product of the eigenvalues. 
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The objective is to obtain data points (p+1) such that its variance-covariance matrix 
will satisfy all the three optimality criteria. Such covariance matrix will be inflated or de-
flated to accommodate good data points among the observed data. The resulting variance-
covariance matrix is then multiplied by a constant for consistency. 

4. The algorithm for obtaining the proposed method 

Let },,,,,,{ 321 mxxxxX −−−=  be a set of m points in pℜ . Let h be a natural number 

such that mhm <<2 . 

1. We select p+1 data points }.,,,,{ 12,1 +−−− pxxx  that satisfy the three optimality crite-

ria. 
2. Use such p+1 data points to obtain the center and variance-covariance matrix; 
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=  respectively. 

3. Calculate the mahalanobis distances for all the m observations using *x  and *S  

As follows; ( ) ( )T
i xxSxxd *

1
**

2 −−= −  

4. The 2
id  (i = 1, 2, 3, ,  ,   ,   ,m) is arranged in order of magnitude from the least  to the 

highest.  
5. The first p+j  (j = 2, 3, 4,  ,  ,  ,  h-p-1) distances are selected and their corresponding 

sample units (points) are used to compute the next *x  and *S  as follows;  
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6. The new set of *x  and *S  are then used to obtain the mahalanobis distances for all the 

observations.  

7. Steps 4, 5, and 6 are repeated until the number of units selected is 
2

1++= pm
h . 

8. The Proposed robust estimators are then given as; ∑
=

=
1
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4.1. Simulation   

For the purpose of comparing the proposed robust method with other methods, Monte 
Carlo simulation is adopted to generate the sets of bivariate normal samples. Also, the same 
procedure is used to obtain the upper control limits for all the four methods under compari-
son.  A set of m = 30 observations was generated from a bivariate normal distribution. The 
proposed robust method was compared with the other three methods (Minimum Volume El-
lipsoid, Minimum Covariance Determinant and The Classical). We assume the Non-

centrality Parameter ( ) ( )0
1

0 µµµµ −Σ′−= −ncp  to be the measure of severity of a 

shift to the out-of-control mean vectorµ  from the in-control mean vector
0

µ . Because the 

signal probability depends on the value of the non-centrality parameter but not on the in-

control mean vector 
0

µ  or the variance-covariance matrix Σ, we made use, without loss of 

generality, the zero vector as 
0

µ  and the identity matrix of order two, I2, as Σ. 

The control limits were determined from 5000 simulations, such that all the methods 
considered had overall false alarm probability of 0.05. The limits were obtained by generat-

ing 5000 data set for m and p (m = 30 and p = 2). The Hotelling-T2 statistic, 2
iT , were 

computed for i = 1, 2, 3,  ,  ,  , m. The maximum value was recorded and the 95th percentile 
of the maximum values of the Hotelling´s -T2  for j = 1, 2, 3,  ,  ,   , 5000 was taken to be the 
Upper Control Limit (UCL) for the control chart. The values obtained were 9.686, 38.166, 
33.917 and 63.326 for the Classical, MVE, MCD and Proposed methods respectively. The 
Lower Control Limit is always set to zero. 

Once the control limits are set, k (k = 1, 3, 5 and 7) outliers are randomly generated 
among the m (m = 30) observations. To generate the outliers, the process mean vector was 
changed from µ = µ0 to µ = µ1 to obtain a given value of non-centrality parameter. The 
charts were compared by estimating the probability of obtaining a valid signal. These prob-
abilities were calculated from 1000 replications. The illustrations were made for k = 1, 3, 5 
and 7 as shown in Tables 4.1 to 4.4. 

Figures 4.1 to 4.4 show the estimated signal probabilities for different non-centrality 
parameter values (ncp = 5, 10, 15, 20, 25 and 30). When there is only one outlier, it can be 
seen that the control chart based on Classical method is effective in detecting the outlier than 
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the other three methods. Figure 4.1 shows the line of Classical method reaches a probability 
value equal or greater than 0.9 when the non-centrality parameter is 30. Though the other 
methods are less powerful for a single outlier but they still signal that there exist outliers 
with a reasonable probability with the proposed method having an edge over the other two 
methods (MVE and MCD). 

However, for multiple outliers, the Classical Control Chart performed poorly in detect-
ing outliers. The method becomes worst when there are 5 or 7 outliers in the data set. For 
instance, when there were 3 outliers and the non-centrality parameter is 20, the estimated 
signal probability was only 0.1600 for the Classical Control Chart while the signal prob-
abilities for MVE, MCD and Proposed Control Charts were 0.423, 0.413 and 0.417 
respectively. For k = 5 or 7 outliers the margin between the Classical and the other control 
charts became more pronounced. For instance, when k = 7 and non-centrality parameter 
value is 30, the signal probability value for Classical Chart is 0.003 while MVE, MCD and 
Proposed Control Chart have signal probability values of 0.261, 0.234 and 0.244 respec-
tively. 

Generally, from the control charts, it can be inferred that for all the methods, as the 
number of outliers increases so the signal probability decreases for a given sample size. 
Also, for all the control charts except the Classical chart, as the value of non-centrality pa-
rameter increases, the signal probability values increase. As a result of this, it can be 
inferred that the Classical Control Chart is optimized for none or single outlier while the 
other robust methods were optimized for detecting multiple outliers, usually the number of 
outliers should be less than m-p-1/2 where p is the number of variables and m is the number 
of observations (Vargas, 2003). 

Table 4.1 gives the signal probability of the four methods for a single outlier for vary-
ing size of non-centrality parameter. For NCP value of 5, the classical chart has the highest 
probability value of 0.1100 closely followed by the proposed chart with probability of 0.075 
while MCD and MVE have probability values of 0.0550 and 0.0450 respectively. When the 
NCP is 30, the signal probability values for all the four charts are 0.9400, 0.8250, 0.7600 
and 0.7300 for classical, proposed, MVE and MCD charts respectively.  

Table 4.1. The signal probability when there is one outlier. 

 METHODS 
NCP Classical MVE MVD Proposed 

5 
10 
15 
20 
25 
30 

0.1100 
0.4100 
0.5500 
0.7200 
0.8100 
0.9400 

0.0450 
0.1300 
0.3000 
0.4200 

          0.5300 
          0.7600 

0.0550 
0.1400 
0.3100 

          0.4000 
          0.5500 

0.7300 

0.0750 
0.2500 
0.4200 
0.5100 
0.6750 
0.8250 

Table 4.2. The signal probability when there are 3 outliers. 

 METHODS 
NCP Classical MVE MVD Proposed 

5 
10 
15 
20 
25 
30 

0.0430 
0.1000 
0.1200 
0.1600 
0.1600 
0.1900 

0.0750 
0.0870 
0.2130 
0.3350 

          0.4670 
          0.5830 

0.0285 
0.0930 
0.2070 

          0.3450 
          0.4450 

0.5770 

0.0400 
0.1330 
0.2470 
0.3550 
0.4300 
0.5270 
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Table 4.3 The signal probability when there are 5 outliers. 

 METHODS 
NCP Classical MVE MVD Proposed 

5 
10 
15 
20 
25 
30 

0.0100 
0.0110 

          0.0100 
0.0200 
0.0180 
0.0180 

0.0080 
0.0420 
0.1180 
0.2280 

          0.3580 
          0.3660 

0.0080 
0.036 
0.0980 

          0.2140 
          0.3500 

0.3700 

0.0240 
0.0560 
0.1120 
0.2240 
0.2940 
0.3080 

 

Table 4.4 The signal probability when there are 7 outliers. 

 METHODS 
NCP Classical MVE MVD Proposed 

5 
10 
15 
20 
25 
30 

0.0100 
0.0120 
0.0070 
0.0100 
0.0100 
0.0030 

0.0165 
0.0450 
0.0900 
0.1560 

         0.1980 
         0.2610 

0.0170 
0.4800 
0.0840 

          0.1470 
          0.2000 

0.2340 

0.0210 
0.0470 
0.0840 
0.1300 
0.1820 
0.1960 
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Fig 4.1: Signal prob when there is one outlier Fig 4.2: Signal prob. when there are 3 outliers    
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Fig 4.3: Signal prob. when there are 5 outliers Fig 4.4: Signal prob. when there are 7 outliers 

4.2. Real life data illustration 

We consider the data presented in Quesenberry (2001). The data consists of 11 quality 
characteristics (variables) measured on 30 products from a production process. The first two 
variables are considered and they are reproduced in columns 2 and 3 of Table 4.5. The two 
variables are used to compare the four methods of constructing Hotelling´s-T2 Control 
Chart. The sample mean vector and covariance matrix for the unmodified data (Classical 
method) of the Table 4.5 are; 









=

8155.59

5415.0
ClassicalX  









=

955066.0000399.0

000399.0002203.0
ClassicalS  

The location and covariance matrices for the two robust methods (MVE and MCD) us-
ing R- Language are given as follows; 

Location and Scatter matrix for MVE 









=

0200.60

5419.0
MVEX  









=

257772.0011328.0

011328.0002360.0
MVES  

Location and Scatter matrix for MCD 









=

9927.59

5474.0
MCDX  










−
−

=
504607.0000705.0

000705.0001943.0
MCDS  

The mean vector and covariance matrix of the data using the proposed robust method 
(PRM) are as follows; 
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







=

2264.60

5266.0
ProposedX  









=

387353.0022083.0

022083.0002146.0
ProposedS  

The values of Hotelling´s-T2 statistics, 2
,usualiT , 2

,MCDiT , 2
,MVEiT and 2

Pr, oposediT  based 

on the Classical, MCD, MVE and Proposed robust methods respectively are presented in 
columns 4, 5, 6 and 7 of Table 4.5 in that order. 

Comparing the values obtained from the four statistics against their respective upper 
control limits, which are 9.686, 33.917, 38.166, and 63.326 for the Classical, MCD, MVE, 
and Proposed methods respectively, it was found that only MCD control chart did not signal 
the second observation as outlier, the other three methods signaled the second observation as 
an outlier. Figures 4.5a through 4.5d showed the multivariate control charts for the four 
methods; Classical, MVE, MCD and PRM charts respectively. In MCD – control chart none 
of the 30 observations is above the upper control limit (Fig. 4.5c). The other control charts 
indicated the second observation to be an outlier (out-of-control point). 

We arbitrarily introduced two more outlying observations into the data, the observa-
tions 14 and 24 were modified to (0.880, 65.230) and (0.980, 66.080) respectively. The 
resulting Hotelling´s-T2 statistics for the four methods together with the data are presented 
in Table 4.6. The corresponding multivariate control charts are as shown in Figures 4.6a 
through 4.6d for Classical, MVE, MCD and PRM respectively. From Table 4.6, while the 
Classical, MCD and MVE control charts indicated two points as outliers, the proposed ro-
bust method  (PRM) chart signals all the three observations (points 2, 14 and 24) as outliers. 
The classical chart indicated observations 2 and 24 as outlying points while both MCD and 
MVE indicated observations 14 and 24 as outliers. Figures 4.6a through 4.6d gave clearer 
details. 

The number of outliers was increased to 5 by modifying observations 18 and 28 to 
(0.350, 53.180) and (0.410, 50.470) respectively in addition to the three existing outlying 
points in the data set. The multivariate statistics obtained from the four methods together 
with the data set are shown in Table 4.7. From the table, the two robust methods, MCD and 
MVE, identified all the outliers (observations 14, 18, 24 and 28) except the second observa-
tion as outliers. The classical chart identified only two points, observations 24 and 28 as 
outlying points, while the proposed robust chart identified all the outlying points as outliers. 
Figures 4.7b and 4.7c are MVE and MCD control charts respectively showing the four ob-
servations above the upper control limits. Figures 4.7a and 4.7d are the control charts for 
Classical and PRM showing two and four points above the upper control limit respectively.  

Finally, the number of outlying points was further increased to 7 with the modification 
of observations 8 and 20 to (0.400, 50.550) and (0.715, 62.455) respectively. Table 4.8 gave 
the multivariate statistics for all the four control charts. The Classical control chart’s per-
formance, as shown in Figure 4.8a, was so poor that it can only identified only two 
observations as outlying points out of seven outliers in the data. Both MVE and MCD con-
trol charts given in Figures 4.8b and 4.8c, performed better by identifying all the outlying 
observations except the second observation as outliers. The PRM chart performed as such 
by identifying all the seven outliers in the data set except the twentieth observation.  
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Table 4.5: Data set and Hotelling´s-T2 statistic using the Classical, MCD, MVE  
and the Proposed Robust Method (PRM) when there is only one (1) outlier 

No. X1 X2 Classical MCD MVE Proposed 
1 0.567 60.558 0.8066 0.8463 1.1238 0.8038 
2 0.538 56.303 12.9755 27.0895 67.2475 102.0470 
3 0.530 59.524 0.1373 0.6041 1.0070 3.4001 
4 0.562 61.102 1.8375 2.5720 4.9464 2.2175 
5 0.483 59.834 1.5697 2.2028 1.5167 0.9069 
6 0.525 60.228 0.3301 0.3615 0.5323 0.0033 
7 0.556 60.756 0.9772 1.2021 2.2802 0.7247 
8 0.586 59.823 0.9045 1.8130 1.6442 8.0729 
9 0.547 60.153 0.1269 0.0509 0.0689 0.6943 
10 0.531 60.640 0.8008 0.9546 2.2730 0.8574 
11 0.581 59.785 0.7192 0.6552 1.5253 7.6383 
12 0.585 59.675 0.9097 0.9091 2.2835 9.8820 
13 0.540 60.489 0.4835 0.5115 1.1256 0.1808 
14 0.458 61.067 5.2413 6.2687 13.3162 17.1425 
15 0.554 59.788 0.0736 0.1033 0.4754 3.5894 
16 0.469 58.640 3.5357 6.9488 7.4692 7.7120 
17 0.471 59.574 2.2696 3.4022 2.1857 1.4820 
18 0.457 59.718 3.2442 4.3967 3.1098 2.5300 
19 0.565 60.901 1.3981 1.8172 3.1419 1.1747 
20 0.664 60.180 6.8326 7.0948 7.2069 22.1173 
21 0.600 60.493 1.8978 1.9560 1.6148 4.0007 
22 0.586 58.370 3.3564 5.8965 17.8616 39.6793 
23 0.567 60.216 0.4275 0.3020 0.2946 1.8933 
24 0.496 60.214 1.1838 1.4432 1.7373 1.0097 
25 0.485 59.500 1.4968 2.5331 1.6721 1.3624 
26 0.573 60.052 0.4843 0.3454 0.4769 3.6558 
27 0.520 59.501 0.2899 0.8866 1.0456 2.7191 
28 0.556 58.476 2.0635 4.5803 12.8536 26.7262 
29 0.539 58.666 1.3860 3.5429 8.8320 17.8671 
30 0.554 60.239 0.2404 0.1447 0.1892 0.8019 

The bold numbers indicate outlying points 
 

Table 4.6: Data set and Hotelling´s-T2 statistic using the Classical, MCD, MVE  
and the Proposed Robust Method (PRM) when there are three (3) outliers 

No. X1 X2 Classical MCD MVE Proposed 
1 0.567 60.558 0.2156 0.8208 0.9639 0.6835 
2 0.538 56.303 11.1453 26.9371 25.7786 67.2619 
3 0.530 59.524 0.1546 0.5949 0.5530 1.6341 
4 0.562 61.102 1.1349 2.7306 2.7151 2.0714 
5 0.483 59.834 1.4296 3.0245 3.7622 2.0271 
6 0.525 60.228 0.6717 0.7466 0.7364 0.1661 
7 0.556 60.756 0.6643 1.3542 1.3345 0.7574 
8 0.586 59.823 0.2773 0.7474 1.3182 5.7024 
9 0.547 60.153 0.1618 0.1293 0.1029 0.2316 
10 0.531 60.640 1.1820 1.4730 1.3954 1.0863 
11 0.581 59.785 0.2384 0.5831 1.0330 5.2204 
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12 0.585 59.675 0.4266 0.8712 1.4140 6.8552 
13 0.540 60.489 0.6525 0.8012 0.7295 0.2732 
14 0.880 65.230 9.0509 107.1500 135.1170 83.6520 
15 0.554 59.788 0.0416 0.0503 0.0760 1.9257 
16 0.469 58.640 0.9293 6.8119 7.8500 5.5945 
17 0.471 59.574 1.4702 4.1925 5.2996 2.7493 
18 0.457 59.718 2.3397 5.6685 7.3243 4.7841 
19 0.565 60.901 0.6842 1.8775 1.9409 1.1879 
20 0.664 60.180 2.1596 7.5567 11.6930 20.7586 
21 0.600 60.493 0.0709 1.7452 2.6869 3.6661 
22 0.586 58.370 3.7556 6.3072 6.6884 27.0517 
23 0.567 60.216 0.0181 0.2386 0.4118 1.1943 
24 0.980 66.080 14.6257 165.3657 212.9290 133.3725 
25 0.485 59.500 0.9127 2.9998 3.6643 1.6948 
26 0.573 60.052 0.0129 0.2515 0.5337 2.4067 
27 0.520 59.501 0.2341 0.9372 0.9592 1.3111 
28 0.556 58.476 2.0733 4.4845 4.3582 17.0178 
29 0.539 58.666 1.1358 3.3007 3.1253 10.7904 
30 0.554 60.239 0.1306  0.1814 0.1976 0.3682 

The bold numbers indicate outlying points 
 

Table 4.7: Data set and Hotelling´s-T2 statistic using the Classical, MCD, MVE  
and the Proposed Robust Method (PRM) when there five (5) outliers 

No. X1 X2 Classical MCD MVE Proposed 
1 0.567 60.558 0.2362 0.7804 0.9022 0.6835 
2 0.538 56.303 2.9413 33.0764 31.6581 67.2629 
3 0.530 59.524 0.1635 0.7412 0.6812 1.6341 
4 0.562 61.102 0.7418 2.8987 2.8360 2.0714 
5 0.483 59.834 1.4570 2.8809 3.5639 2.0271 
6 0.525 60.228 0.6809 0.6788 0.6677 0.1661 
7 0.556 60.756 0.5279 1.3746 1.3344 0.7574 
8 0.586 59.823 0.0634 0.8143 1.3980 5.7024 
9 0.547 60.153 0.2389 0.0890 0.0631 0.2316 
10 0.531 60.640 0.9476 1.4706 1.3952 1.0863 
11 0.581 59.785 0.0391 0.6687 1.1331 5.2204 
12 0.585 59.675 0.0902 1.0170 1.5810 6.8552 
13 0.540 60.489 0.5938 0.7650 0.6919 0.2732 
14 0.880 65.230 7.4386 110.1994 134.3937 83.6520 
15 0.554 59.788 0.0371 0.1161 0.1474 1.9257 
16 0.469 58.640 0.8502 7.3734 8.1688 5.5945 
17 0.471 59.574 1.5701 4.0685 5.0728 2.7493 
18 0.350 53.180 5.4599 121.7731 123.7536 126.8210 
19 0.565 60.901 0.5035 1.9377 1.9621 1.1879 
20 0.664 60.180 1.4118 7.2860 11.3355 20.7586 
21 0.600 60.493 0.1057 1.6383 2.5304 3.6661 
22 0.586 58.370 1.0703 7.8940 8.3402 27.0517 
23 0.567 60.216 0.0813 0.1938 0.3622 1.1943 
24 0.980 66.080 13.4982 168.1998 210.0040 133.3725 
25 0.485 59.500 1.0472 2.9802 3.5583 1.6948 
26 0.573 60.052 0.0214 0.2364 0.5199 2.4067 
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27 0.520 59.501 0.2852 1.0646 1.0547 1.3111 
28 0.410 50.470 15.5514 218.4728 211.2181 310.3428 
29 0.539 58.666 0.1453 4.2697 4.0543 10.7904 
30 0.554 60.239 0.2011 0.1357 0.1501 0.3682 

The bold numbers indicate outlying points 
 

Table 4.8: Data set and Hotelling´s-T2 statistic using the Classical, MCD, MVE  
and the Proposed Robust Method (PRM) when there are seven (7) outliers 

No. X1 X2 Classical MCD MVE Proposed 
1 0.567 60.558 0.2333 0.8913 0.8913 0.6835 
2 0.538 56.303 1.8549 30.6481 30.6481 67.2629 
3 0.530 59.524 0.1823 0.6299 0.6299 1.6341 
4 0.562 61.102 0.6502 2.6878 2.6878 2.0714 
5 0.483 59.834 1.4218 3.4235 3.4235 2.0271 
6 0.525 60.228 0.6607 0.5959 0.5959 0.1661 
7 0.556 60.756 0.4854 1.2566 1.2566 0.7574 
8 0.400 50.550 9.3145 199.6315 199.6315 298.0955 
9 0.547 60.153 0.2491 0.0507 0.0507 0.2316 
10 0.531 60.640 0.8746 1.2905 1.2905 1.0863 
11 0.581 59.785 0.0369 1.2776 1.2776 5.2204 
12 0.585 59.675 0.0717 1.7524 1.7524 6.8552 
13 0.540 60.489 0.5627 0.6248 0.6248 0.2732 
14 0.880 65.230 7.2106 131.8779 131.8779 83.6520 
15 0.554 59.788 0.0547 0.1806 0.1806 1.9257 
16 0.469 58.640 0.8629 7.7875 7.7875 5.5945 
17 0.471 59.574 1.5499 4.8920 4.8920 2.7493 
18 0.350 53.180 3.7306 118.1500 118.1500 126.8210 
19 0.565 60.901 0.4548 1.8720 1.8720 1.1879 
20 0.715 62.455 1.6623 32.0042 32.0042 21.5871 
21 0.600 60.493 0.1221 2.6479 2.6479 3.6661 
22 0.586 58.370 0.7348 8.4610 8.4610 27.0517 
23 0.567 60.216 0.0983 0.4057 0.4057 1.1943 
24 0.980 66.080 13.3108 206.7971 206.7971 133.3725 
25 0.485 59.500 1.0515 3.3899 3.3899 1.6948 
26 0.573 60.052 0.0389 0.6052 0.6052 2.4067 
27 0.520 59.501 0.3053 0.9708 0.9708 1.3111 
28 0.410 50.470 9.9472 201.9369 201.9369 310.3428 
29 0.539 58.666 0.0560 3.9447 3.9447 10.7904 
30 0.554 60.239 0.2110 0.1494 0.1494 0.3682 

The bold numbers indicate outlying points 
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5. Conclusions 

The proposed robust method empirically compete favourably well with the most 
widely used robust methods (MVE and MCD) in detecting outliers in the presence of multi-
ple outliers The proposed method is better in detecting outliers than the MVE and MCD 
especially when there are fewer or single outliers in the data set. As a result of the above 
points, the proposed method is highly recommended when there is no information regards 
the number of outliers in a multivariate data set. 
The proposed robust method of estimating the variance-covariance matrix of multivariate 
data combines the efficiencies of both classical and existing robust methods (MVE and 
MCD) of estimation. The classical method of estimation is most efficient in multivariate 
analysis when there is no or only a single outlier while on the other hand the existing robust 
methods (MVE and MCD) are more efficient in the presence of multiple outliers in a multi-
variate data set.  

The proposed robust method (PRM) performed better and more efficient in the two ex-
treme cases outlined above. While existing robust methods are less efficient where there is 
no or only one outlier the proposed robust method is better. Likewise when there are multi-
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ple outliers, the classical method becomes less efficient while the proposed robust method 
was found to be efficient. 

Generally, since the information on whether a multivariate data set contains outliers or 
not and even the number of outliers, may not be at the disposal of the analyst. It is highly 
recommended to use the proposed robust method in estimating the variance-covariance 
since it will combine both efficiencies of both classical and other robust methods in the 
presence or otherwise of multiple outliers.  Extension of further research to analytical ap-
proach has also been opened. 
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