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Abstract 

In this paper we develop algorithms to solve macro econometric models with forward-looking 
variables based on Newton method for nonlinear systems of equations. The most difficult step for New-
ton methods represents the resolution of a large linear system for each iteration. Thus, we compare 
the performances resulted by solving this linear system using two iterative methods and the direct me-
thod. 

We also describe an implementation of the parallel versions of such algorithms using a software 
package. Our experiments confirm that the iterative methods have a low computational complexity 
and storage requirements, but the parallel versions of direct methods show a superior speedup. 
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1. INTRODUCTION 

 

Advances in the computational power have a large influence on almost all fields of 

scientific computing. Although, during the last decade, microprocessors‟ performance has 

significantly increased and new architectures like multi-core processors has appeared, there 

are still problems that cannot be solved on a single desktop computer [9].   
One of the fields that need a special attention is macroeconometric modelling. Macroe-

conometric models with forward-looking variables are a special class of models which 

involve very large systems of equations. The matrices resulting from these models could be 

so large that doesn‟t fit with the internal memory of a single desktop computer. For such 

models it is necessary to develop high performance parallel algorithms that can be run in pa-

rallel execution environments like parallel computers, clusters of workstations or grid 

environments. 

A special kind of macroeconometric models are the rational expectations models [14]. 

These models contain variables that forecast the economic system state for the future pe-

riods t + 1, t + 2, ... , t + T, where T is the forecast time horizon. Depending on the size of 

the forecast time horizon, macroeconometric models with rational expectations could give 

raise to systems with tens or hundreds of thousands of equations. 
For example, MULTIMOD model [16], [21] is a dynamic, annual forecast model de-

signed by the International Monetary Fund that describes the economic behaviour of the 

whole world decomposed in 8 industrial regions and the rest of the countries. The model 

contains 466 equations. If we want to solve the model for a 30 years time horizon then we 

will have to solve a nonlinear system containing 13908 equations which is not a simple task 

nor for the most powerful workstations. 

QPM (Quarterly Projection Model) [2] is a quarterly model developed by the Bank of 

Canada to obtain economic forecasts and as a research tool for the analysis of macroeco-

nomic policies and economic equilibrium on long term. The QPM model has 329 nonlinear 

equations. The resolution of the model for a 30 years time horizon means to solve a system 

of 39480 equations. 
FRB/US [5], [6] is a quarterly econometric model that describes the U.S. economy and 

has around 300 equations. An extension of this model is FRB/GLOBAL [that describes the 

world economy using few thousands equations. The resolution of these models for a 20-30 

years time horizon implies nonlinear systems with hundreds of thousands of equations. 

Let‟s consider the general form of the nonlinear model with rational expectations: 

  hi(yt,yt-1, ... ,yt-r,yt+1|t-1, ... ,yt+h|t-1, zt) = 0,   i = 1,... m   

where 1 tjty  is the expectation of yt+j conditioned on the information available at the end 

of the period t-1 and zt represents the exogenous and random variables. For consistent ex-

pectations, the forward expectations 1 tjty  have to coincide with the next period‟s forecast 

when solving the model conditioned on the information available at the end of period t-1. 

These expectations are therefore linked in time and solving the model for each yt condi-

tioned on some start period 0 requires each yt+j|0 for  j = 1,2, ... T-t and a final condition yT+j|0 

, j = 1, 2 ..., h. Considering these equations for successive time periods a large nonlinear sys-

tem of equations will result. 

One of the first methods used to solve such models was the extended path algorithm 

proposed by Fair and Taylor [13]. They use Gauss-Seidel iterations to solve the model, pe-

riod after period, for a given time horizon. The convergence of this method depends on the 
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order of the equations. The endogenous forecast variables are considered as predetermined 

and then the model is solved period after period for a time horizon. The solutions thus ob-

tained represent the new values for the forecast variables. The process is repeated until the 

convergence is obtained. The advantage of this method is it‟s simplicity in implementation 

and the low storage requirements but this method has a main disadvantage: if the initial val-

ues for the endogenous variables are not “well” chosen, the convergence of the system is 
very poor or the system is not convergent at all. 

An alternative method to solve the model is to built a system of equations written for 

successive periods t, t + 1, …, t + T¸ and to solve this system of nT nonlinear equations by 

one of the existing methods for nonlinear systems. Due to the large scale of the system, this 

method has been avoided in the past. Due to the recent advances in the parallel algorithms 

field it is now possible to solve such large scale systems with efficiency. 

The Newton method applied to solve this model uses the following algorithm: 

 
If the linear system b(k)  J(k)s(k)  is very large, the use of direct methods to deter-

mine the solution can be very expensive due to high memory requirements and 

computational cost. This is a very good reason to develop high performance parallel algo-

rithms as an attractive alternative to the classical serial algorithms. Another alternative to 

serial direct methods are the iterative methods which determine only an approximation of 

the solution, but this fact does not influence the convergence of the Newton method. These 
iterative algorithms can be parallelized too.  

We will also analyze high performance iterative and direct methods used to solve large 

linear systems that result by applying the Newton method, then we will describe an imple-

mentation of the parallel versions of such algorithms that we‟ve developed using a software 

package called PLSS (Parallel Linear System Solver). 

 

2. SERIAL ITERATIVE AND DIRECT METHODS FOR THE SOLVING OF 

LINEAR SYSTEMS 

 

For very large linear systems, the most appropriate iterative methods are the so-called 

Krylov techniques [23]. Contrary to stationary iterative methods such as Jacobi or Gauss-
Seidel, Krylov techniques use information that changes from iteration to iteration. For a li-

near system b Ax  , Krylov methods compute the ith iterate x(i) as : 

d(i)1)-x(ix(i)                  1,2,...  i       

Operations involved to find the ith update d(i) are only inner products, saxpy and ma-

trix-vector products that has the complexity of )( 2n , so that Krylov methods are 

computational attractive comparing to the direct methods for linear systems. 

NEWTON Method 

Given an initial solution y(0) 

for k = 0,1,2, ... until convergence 

 Evaluate b(k) = - h(y(k),z) 

Evaluate J(k) = ∂h(y(k),z)/∂y‟ 
Solve J(k)s(k) = b(k) 

y(k+1) = y(k) + s(k) 

endfor 
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A perhaps the best known of the Krylov‟ method is the conjugate gradient method. 

This method solves symmetric positive definite systems. The idea of the CG method is to 

update the iterates x(i) in a way to ensure the largest decrease of the objective function 

bxAxx ''
2

1
 , while keeping the direction vectors d(i) A-orthogonal. This method can be 

implemented using only one matrix-vector multiplication per iteration. In exact arithmetic, 
the CG method gives the solution for at most n iterations. The complete description of the 

CG method can be found in [15]. 

Another Krylov method for general non symmetric systems is the Generalized Minim-

al Residuals (GMRES) introduced by [23]. The pseudo-code for GMRES is: 

 
 

The most difficult part of this algorithm is not to lose the orthogonality of the direction 

vectors v(j). To achieve this goal the GMRES method uses a Gram-Schmidt orthogonaliza-

tion process. GMRES requires the storage and computation of an increasing amount of 

information, vectors v and matrix H. To overcome these difficulties, the method can be res-

tarted after a chosen number of iterations m. The current intermediate results are used as a 

new starting point. 
Another Krylov method implemented by the authors is the BiConjugate Gradient me-

thod [6]. BiCG uses a different approach based upon generating two mutually orthogonal 

sequences of residual vectors and A-orthogonal sequences of direction vectors. The updates 

for residuals and for the direction vectors are similar to those of the CG method, but are per-

formed using A and its transpose. The disadvantage of the BiCG method is an erratic 

behaviour of the norm of the residuals and potential breakdowns. An improved version, 

called BiConjugate Gradient Stabilized BiCGSTAB, is presented below: 

GMRES 
Given an initial solution x(0) compute r = b – Ax(0) 

ρ = ||r||2, v(1) = r/ ρ, β = ρ 

for k = 1,2,... until convergence 

 for j = 1,2, ... k, 

   h(j,k) = (Av(k))‟v(j)  

 end 

 v(k+1) = Av(k) -  

k

j
jvkjh

1
)(),(   

 h(k+1,k) = ||v(k+1)||2  

 v(k+1,k) = v(k+1)/h(k+1,k) 

endfor 

y(k) = argminy ||βe1 – H(k)y||2 

x(k) = x(0) + [v(1) ... v(k)] y(k) 
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For the BiCGSTAB method we need to compute 6 saxpy operations, 4 inner products 

and 2 matrix-vector products per iteration and to store matrix A and 7 vectors of size n. The 

computational complexity of the method is )( 2n  like the other Krylov methods. The op-

eration count per iteration cannot be used to directly compare the performance of 

BiCGSTAB with GMRES because GMRES converges in much less iterations than 

BiCGSTAB. We have implemented these iterative methods and run experiments to deter-
mine the possible advantages of them over the direct methods. The results of our 

experiments are presented in the next section. 

The other alternative to solve a linear system  b Ax  is the direct method that con-

sists in two steps: 

 First, the matrix A is factorized, LUA   where L is a lower triangular matrix with 1s 

on the main diagonal and U is an upper triangular matrix; in the case of symmetric positive 

definite matrices, we have tLLA  . 

  Second, we have to solve two linear systems with triangular matrices: bLy   and 

yUx  . 

The standard LU factorization algorithm with partial pivoting is [15]: 

 

 

 

 

 

 

 
 

 

 

 

The 

computational complexity of this algorithm is )2/2( 3n . After we obtain the matrix factors 

BiCGSTAB  

Given an initial solution x(0) compute r = b – Ax(0) 

ρ0 = 1, ρ1 = r(0)‟r(0), α = 1, ώ = 1, p = 0, v = 0 

for  k = 1,2, ...  until  convergence 

 β = (ρk/ ρk-1)(α/ώ) 

 p = r + β(p- ώv) 

 v = Ap 

 α = ρk/(r(0)‟v) 

 s = r – αv 
 t = As 

 ώ = (t‟s)(t‟t) 

 x(k) = x(k-1) + αp + ώs 

 r = s – ώt 

 ρk+1 = - ώr(0)‟t 

endfor 

Right-looking LU factorization 

for k =1:n-1 do 

find ν with k≤ ν≤n such that 


 ),:(),( knkAkA   

A(k,k:n)↔A(ν, k:n) 
p(k) = ν 
if A(k,k) ≠ 0 then 
 A(k+1:n, k) = A(k+1:n,k)/A(k,k) 
 A(k+1:n,k+1:n) = A(k+1:n,k+1:n) - A(k+1:n, k) A(k, k+1:n) 

endif 

endfor 
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L and U we have to solve two triangular systems: bLy   and yUx  . These systems are 

solved using forward and backward substitution that have a computational complexity of 

)( 2n , so the most important computational step is the matrix factorization. That‟s why we 

have to show a special attention to the algorithms for matrix factorization. 

In practice, using actual computers with memory hierarchies, the above algorithm is not ef-

ficient because it uses only level 1 and level 2 BLAS operations [18], [11]. As it is well-

known, level 3 BLAS operations [10] have a better efficiency than level 1 or level 2 opera-

tions. The standard way to change a level 2 BLAS operations into a level 3 BLAS operation 

is delayed updating. In the case of the LU factorization algorithm we will replace k rank-1 

updates with a single rank-k update.  

We present a block algorithm for LU factorization that uses level 3 BLAS operations. 

The nn matrix A is partitioned as in Figure 1. The 00A  block consists of the first b col-

umns and rows of the matrix A. 

 

 
Figure no. 1 Block LU factorization 

 

We can derive the following equations starting from A=LU: 

000000 AUL      (1) 

100010 AUL       (2) 

010100 AUL       (3) 

1111110110 AULUL      (4) 

Equations (1) and (2) perform the LU of the first b columns of the matrix A. Thus we 

obtain 00L , 10L  and 00U  and now we can solve the triangular system from equation (3) that 

gives 01U . The problem of computing 11L  and 11U reduces to compute the factorization of 

the submatrix 01101111' ULAA   that can be done using the same algorithm but with 

'11A  instead of A. The block LU factorization algorithm can now be derived easily: suppose 

we have divided the matrix A in column blocks with b columns in each block. The complete 

block LU factorization algorithm is given below. 
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The process of factorization is shown in Figure 2. The factorization of the current col-

umn block is done with the usual BLAS 2 operations and the active part of the matrix A will 
be updated with b rank-one updates simultaneously which in fact is a matrix-matrix multip-

lication (level 3 BLAS). If bn   almost all floating point operations are done in the 

matrix-matrix multiplication operation. 

  

 
 

Figure no. 2 Block LU factorization with BLAS 3 operations 

 

 

 

Block LU factorization 

for kb =1 to n-1 step b do 

 bf = min(kb + b – 1, n) 

 {LU factorization of A(kb : n, kb : bf ) with BLAS 2} 

 for k = kb to bf do 

  find k such that 


 ),:(),( iniAikA  

  if i ≠ k then 

   swap rows i and k 

  endif 

  A(i+1:n, i) = A(i+1:n, i)/A(i,i) 

  A(i+1:n, i+1: bf) = A(i+1:n, i+1: bf ) - A(i+1:n, i) A(i, i+1: bf) 

 endfor 

 {Let 
~

L  be unit lower triangular matrix bb  stored in ):,:( fbfb bkbkA } 

 Solve triangular systems ):1,:(
~

nbbkAZL ffb   

 Update ZnbbkA ffb  ):1,:(  

 {Delayed updating} 
 ):1,:():,:1():1,:1():1,:1( :: nbbkAbknbAnbnbAnbnbA ffbfbfffff   

endfor 
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3. THE IMPLEMENTATION OF PARALLEL ALGORITHMS FOR LINEAR 

SYSTEMS 
 

For very large matrices that result for the econometric models presented above, the 

serial algorithms may not be appropriate to solve the models. Thus, parallel versions of the 

above presented algorithms have to be developed and implemented. 

Software packages for solving linear systems have known a powerful evolution during 

the last 35 years. LINPACK was the first portable linear system solver package followed at 

the end of „80 by a new software package for linear algebra problems LAPACK [1] which 

was adapted for parallel computation resulting ScaLAPACK [7] library. Other software 

packages for parallel computation have been developed over the years: PETSc [3] is a paral-

lel library that implements iterative methods, PARPACK [20] package can handle matrices 

in sparse format; SuperLU [26] package implements a supernodal parallel algorithm for 
sparse matrix factorization.  

Although parallel algorithms for linear systems are studied and very well understood 

nowadays, the availability for general purpose, high performance parallel linear algebra li-

braries is limited by the complexity of implementation. Almost all parallel libraries have a 

complicated interface, very difficult to use due to the complexity of the parallel algorithms. 

We have developed a library that implements parallel algorithms for linear systems 

solving - PLSS (Parallel Linear System Solver). The library was designed with an easy to 

use interface, which is almost identical with the serial algorithms‟ interface. This makes the 

software developing process very easy because the parallelism is hidden from the user and 

the algorithms are almost identical with their serial versions. This goal was obtained by 

means of data encapsulation in opaque objects that hide the complexity of data distribution 

and communication operations. The PLSS library was developed in C and for the communi-
cation between processors we used MPI library [24], which is a “de facto” standard for 

message passing environments. 

The PLSS library is structured on four levels, as we can see in Figure no. 3. 
 

 

 

Native BLAS 

library 

Native MPI 

library 

Standard C library 

The interface 

PLSS-BLAS  

The interface 

MPI-BLAS  

The interface PLSS-

Standard C library  

Data distribution level  

Object manipulation 

routines 

Application Program Interface – provides routines for 

parallel linear system solving 

Architecture dependent level 

Architecture independent 

level 

Data distribution  and 

encapsulation level 

API level  

Local BLAS routines  

 
Figure no. 3 PLSS structure 

 

The first level contains the standard BLAS, MPI and C libraries. This level is architec-

ture dependent. The second level provides the architecture independence, which implements 

the interface between the first level and the rest of the PLSS package. The next level imple-
ments the data distribution model – all details regarding distribution of vectors and matrices 

on processors are localized at this level. At this level, the data are encapsulated in objects 

that are opaque to users, hiding thus the complexity of communication operations.  
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This level defines: 

Objects that describe vectors and matrices. 

Object manipulation routines – object creation, destroying routines and object ad-
dressing routines. 

Local BLAS routines. Because matrices and vectors are encapsulated in objects, we 
must extract some information from these objects such as vector/matrix dimension, their lo-

calization etc., before calling a BLAS routine to perform some computations.  Local BLAS 

routines extract these information and then call the standard BLAS routines.  

 Communication functions – these functions implement the communication opera-
tions between processors.  

The top level of the PLSS library is, in fact, the application programming interface. 

PLSS API provides a number of routines that implements parallel BLAS operations and pa-
rallel linear system solving operations: direct methods based on LU and Cholesky matrix 

factorization and nonstationary iterative methods GMRES, BiCG, BiCGSTAB. 

The PLSS library uses a logical bidimensional mesh of processors. We have chosen 

this model of processor interconnection based on scalability studies of the matrix factoriza-

tion algorithms [22]. In this case, the isoefficency function [17] for LU matrix factorization 

is )( ppO , that means a highly scalable algorithm.  

For a linear system Ax = b, vectors x and b are distributed on processors in a block 

column cyclic model and the system matrix A is distributed according to the vector distribu-

tion – the column A*,j will be assigned to the same processor as xj.  

We also present some examples of parallel implementation of some basic operations for the 

PLSS package. Matrix-vector multiplication Ax = y is a frequent operation for linear system 

solving algorithms. Figure 4 shows the necessary steps to implement parallel matrix-vector 

multiplication. 

 

    
  

Figure no. 4 Matrix-Vector multiplication 
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At the first step (Figure 4a) the vector components are distributed on the processors 

columns. After vector distribution it follows a step consisting in local matrix-vector multip-

lications (Figure 4b). At this moment each processor owns a part of the final result (Figure 

4c). At the last step, these partial components are summed up along the processor rows 

(Figure 4d).  

Rank-1 update is another basic operation which consists in the following computation:  
A = A + yxt.  Assuming that x and y have identical distributions on processor columns and 

rows, each processor has the data needed to perform the local computations.  

These two basic operations, matrix-vector multiplication and rank-1 update can be 

used in order to derive a parallel algorithm for matrix-matrix multiplication. It is easy to ob-

serve that the product C = AB can be decomposed in a number of rank-1 updates:  

C = a0b0
t + a1b1

t + … + an-1bn-1
t                                                          (5) 

where ai are the columns of matrix A and bi
t are the rows of matrix B.  

The parallelization of matrix-matrix multiplication is equivalent with the paralleliza-

tion of a sequence of rank-1 updates. In order to obtain an increase in performance, the rank-

1 update can be replaced with rank-k update, but, in this case, x and y will be rectangular 

matrices. We conclude this section with the implementation of the block Cholesky factoriza-

tion. Cholesky factorization consists in finding the factorization of the form A = LLT , where 
A is a symmetric positive definite matrix. Figure 5 shows the partitioning of matrices A and 

L. 

 
   A_11    *  

A =   

   A_21 A_22 

 

 

 

   L_11    0  

L =   

   L_21 L_22 

 

 
Figure no. 5 The partitioning of matrices A and L 

 

From A = LLT we can derive the following equations:  

     A11 = L11L11
T   (6) 

     L21L11
T = A21   (7) 

     A22 – L21L21
T = L22L22

T  (8) 

If matrix L will overwrite the inferior triangle of A, then the Cholesky factorization 

consists in the following three computations:  

A11 ← L11 = Cholesky(A11)   (9) 

A21 ← L21 = A21L21
-T   (10) 

A22 ← A22 –L21L21
T   

 (11) 

The dimension of matrix block A11 is computed such that A11 will be stored on only 

one processor and the factorization from equation (9) will be a local operation. Under these 

conditions A21 is stored on the same column of processors and L11 will be distributed to these 

processors. The parallel Cholesky factorization can be described as follows: 
Step 1: Determine the block size such that A11 is stored on a single processor. 
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Step 2: Split matrix A into blocks A11, A21, A_22 according to the block size computed 

at the previous step. 

Step 3: Compute the Cholesky factorization of submatrix A11 – this is a local opera-

tion. 

Step 4: Distribute A11 on the column of processors. 

Step 5: Solve the triangular system given by equation (8) – this is a local operation be-
cause A11 was distributed at the previous step on all processors that participate at this 

computation. 

Step 6: Compute the symmetric rank-k update given by equation (9). 

Step 7: Recursive, apply the same steps to matrix A22. 

The current version of the PLSS library implements the following parallel BLAS rou-

tines: 

 

 
Table no. 1 Level 1 BLAS routines 

int  Axpy( Object alpha, Object x, Object y) computes yxxy   

int Dot(Object x, Object y, Object alpha) computes the dot product yxT  

int Nrm2( Object x, Object alpha) computes the euclidian norm of vector x. 

int Scal(Object x, Object alpha) scales vector x : xxx   

int Iamax(Object x, Object k, Object xmax) 
computes the maximum value (xmax) and 

the global offset (k) for object x. 

 

 
Table no. 2 Level 2 BLAS routines 

int Ger ( Object alpha, Object x, Object A) computes AxyA T   

int Gemv (int transa, Object alpha, Object A, 

Object x, Object beta, Object y) 

computes the matrix-vector multiplication: 

yAxy    

int Symv (int uplo, Object alpha, Object A, 

Object x, Object beta, Object y) 

computes the matrix-vector multiplication 

for symmetric matrices : yAxy    

int Trmv (int uplo, int trans, int diag, Object A, 
Object x) 

computes the matrix-vector multiplication for 
triangular matrices.  

int Trsv (int uplo, int trans, int diag, Object A, 
object x) 

solves the linear system Ax=b where A is a 
triangular matrix. 

 
Table no. 3 Level 3 BLAS routines 

int Syrk (int uplo, int trans, Object alpha, Object A, 

Object beta, Object C) 

symmetric rank-k update: 

CAAC T    

int Trsm (int side, int uplo, int trans, int diag, Object 

alpha, Object A, Object C) 

solves the multiple right hand linear 

system: AX = B 

int Gemm(int trans, int transb, Object alpha, Object A, 

Object B, Object beta, Object C) 
Matrix multiplication: CABC    

 

The name of routines and the significance of parameters trans, side, uplo, diag, are the 

same as for the original BLAS library. 

For matrix factorization, PLSS library has two routines: 
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 Cholesky(Object A) – computes the Cholesky factorization of a SPD matrix A. 

 LU(Object A, Object pivots) – computes the LU factorization with partial pivoting. 
Finally, the PLSS package contains routines that implement the GMRES, BiCG and 

BICGSTAT iterative methods.  

 

4. EXPERIMENTAL RESULTS 
 

We have conducted performance experiments for both serial and parallel versions of 

the algorithms for two iterative methods – GMRES(35) and BiCGSTAB and for the direct 

method that consists in matrix factorization. For our experiments we have considered nonli-

near systems containing between 2000 and 20000 variables. The tolerance for the solution 

was fixed at 10-4 for all methods. The serial versions of the algorithms are implemented us-

ing the C programming language under the Linux operating system. Both iterative methods 

behave relatively well for our problems but BiCGSTAB is slightly less expensive in number 

of floating point operations and memory requirements. Table 4 shows the number of float-

ing point operations per iteration for each Newton variant to converge and the amount of 
memory needed. 

 
Table no. 4 The number of MFLOP/iteration and memory requirements 

GMRES(35) BiCGSTAB 

Size MFLOP Memory (Mb) Size MFLOP Memory 

(Mb) 

2000 149 0.66 2000 135 0.38 

4000 261 1.51 4000 260 0.66 

8000 962 2.82 8000 744 1.32 

12000 3800 4.05 12000 2670 1.88 

16000 8310 5.65 16000 6790 2.68 

20000 21540 7.24 20000 20830 3.22 

 

These results show that the iterative methods can be a good alternative to direct me-

thods for systems containing a higher number of equations mainly due to the low memory 

requirements. This allow that large problems to be solved on a single workstation. Although 

the data used for such problems fits on a single workstation internal memory, the time 

needed to solve them can be very high. In practice, a compromise between memory re-

quirements and the solving time is always the best solution. For the cases when the time is 

too high, parallel solvers are necessary. 

Parallel versions of the algorithms implemented using the PLSS package were ex-

ecuted on a cluster of workstations, connected through a 100Mb Ethernet local network, 

each station having 512 MB of main memory. The PLSS package uses the MPICH imple-
mentation of the MPI library and, for the local BLAS operations, uses the ATLAS library 

[25] that provides a high performance for local operations. The ATLAS library can be re-

placed with a vendor specific library, but this would introduce architecture dependence. We 

have tested the PLSS package for both iterative and direct methods, for 1, 2, 4, 8, and 16 

processors. The dimension of the matrix was maintained fixed with 20000 rows and col-

umns. Figure 6(a) shows the speedup of the parallel algorithms for the case when iterative 

methods are used to solve the model and figure 6(b) shows the speedup in the case of using 

direct methods. 
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Figure no. 6.1 The speedup for parallel versions of the algorithms - 
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Speedup for the LU method

0

1

2

3

4

5

6

7

8

9

1 2 4 8 16

Number of processors

S
p

e
e

d
u

p

 
Figure no. 6.2 The speedup for parallel versions of the algorithms-  

Direct method (LU factorization) 

 

As we can observe, the speedup for the GMRES is slightly better than for the 

BiCGSTAB method. Compared to the iterative methods, the direct method based on matrix 

factorization shows a better speedup, meaning that these algorithms are more scalable than 

the iterative ones. They are better suited for very large problems which run on parallel envi-

ronments with a large number of processors. 
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5. CONCLUSIONS 
 

In this paper we have developed some algorithms to solve macroeconometric models 

with forward-looking variables based on the Newton method for nonlinear systems of equa-

tions. The most difficult step for Newton methods represents the resolution of a large linear 

system for each iteration. We also compared the performances resulted by solving this linear 

system using two iterative methods and the direct method.  

For serial algorithms, Krylov methods proved to be an interesting alternative to exact 

Newton method with LU factorization for large systems. The computational cost and the 

memory requirements are inferior in the case of Krylov methods compared with LU factori-

zation due to a low computational complexity. 

Regarding the parallel algorithms, we have developed a parallel library PLSS with an 

interface easy to use. All the complexity of the parallel algorithms is hidden from the users 
by encapsulating the matrices and vectors in opaque objects. The experiments using our li-

brary for the direct methods using LU factorization showed a better scalability compared to 

iterative methods because the iterative algorithms involve a global communication step at 

the end of each iteration. These results recommend the use of parallel algorithms for very 

large systems in parallel environments with a large number of processors. 
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