
ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII „ALEXANDRU IOAN CUZA” DIN IAŞI

Număr special Ştiinţe Economice 2010

NUMERICAL PARALLEL ALGORITHMS FOR LARGE SCALE

MACROECONOMETRIC MODELS

Bogdan OANCEA

Artifex University

Bucharest, Romania

oanceab@ie.ase.ro

Tudorel ANDREI

Academy of Economic Studies

Bucharest, Romania

andreitudorel@yahoo.com

Stelian STANCU

Academy of Economic Studies

Bucharest, Romania

stelian_stancu@yahoo.com

Andreea Iluzia IACOB

Academy of Economic Studies

Bucharest, Romania

aiacob@ase.ro

Abstract

In this paper we develop algorithms to solve macro econometric models with forward-looking
variables based on Newton method for nonlinear systems of equations. The most difficult step for New-
ton methods represents the resolution of a large linear system for each iteration. Thus, we compare
the performances resulted by solving this linear system using two iterative methods and the direct me-
thod.

We also describe an implementation of the parallel versions of such algorithms using a software
package. Our experiments confirm that the iterative methods have a low computational complexity
and storage requirements, but the parallel versions of direct methods show a superior speedup.

Keywords: macro econometric model, rational expectations model, linear algebra, Newton

methods, Krylov techniques, direct methods, software package.
JEL classification: B23, C87

mailto:oanceab@ie.ase.ro
mailto:andreitudorel@yahoo.com
mailto:stelian_stancu@yahoo.com

342 Bogdan OANCEA, Tudorel ANDREI, Stelian STANCU, Andreea Iluzia IACOB

1. INTRODUCTION

Advances in the computational power have a large influence on almost all fields of

scientific computing. Although, during the last decade, microprocessors‟ performance has

significantly increased and new architectures like multi-core processors has appeared, there

are still problems that cannot be solved on a single desktop computer [9].
One of the fields that need a special attention is macroeconometric modelling. Macroe-

conometric models with forward-looking variables are a special class of models which

involve very large systems of equations. The matrices resulting from these models could be

so large that doesn‟t fit with the internal memory of a single desktop computer. For such

models it is necessary to develop high performance parallel algorithms that can be run in pa-

rallel execution environments like parallel computers, clusters of workstations or grid

environments.

A special kind of macroeconometric models are the rational expectations models [14].

These models contain variables that forecast the economic system state for the future pe-

riods t + 1, t + 2, ... , t + T, where T is the forecast time horizon. Depending on the size of

the forecast time horizon, macroeconometric models with rational expectations could give

raise to systems with tens or hundreds of thousands of equations.
For example, MULTIMOD model [16], [21] is a dynamic, annual forecast model de-

signed by the International Monetary Fund that describes the economic behaviour of the

whole world decomposed in 8 industrial regions and the rest of the countries. The model

contains 466 equations. If we want to solve the model for a 30 years time horizon then we

will have to solve a nonlinear system containing 13908 equations which is not a simple task

nor for the most powerful workstations.

QPM (Quarterly Projection Model) [2] is a quarterly model developed by the Bank of

Canada to obtain economic forecasts and as a research tool for the analysis of macroeco-

nomic policies and economic equilibrium on long term. The QPM model has 329 nonlinear

equations. The resolution of the model for a 30 years time horizon means to solve a system

of 39480 equations.
FRB/US [5], [6] is a quarterly econometric model that describes the U.S. economy and

has around 300 equations. An extension of this model is FRB/GLOBAL [that describes the

world economy using few thousands equations. The resolution of these models for a 20-30

years time horizon implies nonlinear systems with hundreds of thousands of equations.

Let‟s consider the general form of the nonlinear model with rational expectations:

 hi(yt,yt-1, ... ,yt-r,yt+1|t-1, ... ,yt+h|t-1, zt) = 0, i = 1,... m

where 1 tjty is the expectation of yt+j conditioned on the information available at the end

of the period t-1 and zt represents the exogenous and random variables. For consistent ex-

pectations, the forward expectations 1 tjty have to coincide with the next period‟s forecast

when solving the model conditioned on the information available at the end of period t-1.

These expectations are therefore linked in time and solving the model for each yt condi-

tioned on some start period 0 requires each yt+j|0 for j = 1,2, ... T-t and a final condition yT+j|0

, j = 1, 2 ..., h. Considering these equations for successive time periods a large nonlinear sys-

tem of equations will result.

One of the first methods used to solve such models was the extended path algorithm

proposed by Fair and Taylor [13]. They use Gauss-Seidel iterations to solve the model, pe-

riod after period, for a given time horizon. The convergence of this method depends on the

Numerical Parallel Algorithms for Large Scale Macroeconometric Models 343

order of the equations. The endogenous forecast variables are considered as predetermined

and then the model is solved period after period for a time horizon. The solutions thus ob-

tained represent the new values for the forecast variables. The process is repeated until the

convergence is obtained. The advantage of this method is it‟s simplicity in implementation

and the low storage requirements but this method has a main disadvantage: if the initial val-

ues for the endogenous variables are not “well” chosen, the convergence of the system is
very poor or the system is not convergent at all.

An alternative method to solve the model is to built a system of equations written for

successive periods t, t + 1, …, t + T¸ and to solve this system of nT nonlinear equations by

one of the existing methods for nonlinear systems. Due to the large scale of the system, this

method has been avoided in the past. Due to the recent advances in the parallel algorithms

field it is now possible to solve such large scale systems with efficiency.

The Newton method applied to solve this model uses the following algorithm:

If the linear system b(k) J(k)s(k) is very large, the use of direct methods to deter-

mine the solution can be very expensive due to high memory requirements and

computational cost. This is a very good reason to develop high performance parallel algo-

rithms as an attractive alternative to the classical serial algorithms. Another alternative to

serial direct methods are the iterative methods which determine only an approximation of

the solution, but this fact does not influence the convergence of the Newton method. These
iterative algorithms can be parallelized too.

We will also analyze high performance iterative and direct methods used to solve large

linear systems that result by applying the Newton method, then we will describe an imple-

mentation of the parallel versions of such algorithms that we‟ve developed using a software

package called PLSS (Parallel Linear System Solver).

2. SERIAL ITERATIVE AND DIRECT METHODS FOR THE SOLVING OF

LINEAR SYSTEMS

For very large linear systems, the most appropriate iterative methods are the so-called

Krylov techniques [23]. Contrary to stationary iterative methods such as Jacobi or Gauss-
Seidel, Krylov techniques use information that changes from iteration to iteration. For a li-

near system b Ax , Krylov methods compute the ith iterate x(i) as :

d(i)1)-x(ix(i) 1,2,... i

Operations involved to find the ith update d(i) are only inner products, saxpy and ma-

trix-vector products that has the complexity of)(2n , so that Krylov methods are

computational attractive comparing to the direct methods for linear systems.

NEWTON Method

Given an initial solution y(0)

for k = 0,1,2, ... until convergence

 Evaluate b(k) = - h(y(k),z)

Evaluate J(k) = ∂h(y(k),z)/∂y‟
Solve J(k)s(k) = b(k)

y(k+1) = y(k) + s(k)

endfor

344 Bogdan OANCEA, Tudorel ANDREI, Stelian STANCU, Andreea Iluzia IACOB

A perhaps the best known of the Krylov‟ method is the conjugate gradient method.

This method solves symmetric positive definite systems. The idea of the CG method is to

update the iterates x(i) in a way to ensure the largest decrease of the objective function

bxAxx ''
2

1
 , while keeping the direction vectors d(i) A-orthogonal. This method can be

implemented using only one matrix-vector multiplication per iteration. In exact arithmetic,
the CG method gives the solution for at most n iterations. The complete description of the

CG method can be found in [15].

Another Krylov method for general non symmetric systems is the Generalized Minim-

al Residuals (GMRES) introduced by [23]. The pseudo-code for GMRES is:

The most difficult part of this algorithm is not to lose the orthogonality of the direction

vectors v(j). To achieve this goal the GMRES method uses a Gram-Schmidt orthogonaliza-

tion process. GMRES requires the storage and computation of an increasing amount of

information, vectors v and matrix H. To overcome these difficulties, the method can be res-

tarted after a chosen number of iterations m. The current intermediate results are used as a

new starting point.
Another Krylov method implemented by the authors is the BiConjugate Gradient me-

thod [6]. BiCG uses a different approach based upon generating two mutually orthogonal

sequences of residual vectors and A-orthogonal sequences of direction vectors. The updates

for residuals and for the direction vectors are similar to those of the CG method, but are per-

formed using A and its transpose. The disadvantage of the BiCG method is an erratic

behaviour of the norm of the residuals and potential breakdowns. An improved version,

called BiConjugate Gradient Stabilized BiCGSTAB, is presented below:

GMRES
Given an initial solution x(0) compute r = b – Ax(0)

ρ = ||r||2, v(1) = r/ ρ, β = ρ

for k = 1,2,... until convergence

 for j = 1,2, ... k,

 h(j,k) = (Av(k))‟v(j)

 end

 v(k+1) = Av(k) -

k

j
jvkjh

1
)(),(

 h(k+1,k) = ||v(k+1)||2

 v(k+1,k) = v(k+1)/h(k+1,k)

endfor

y(k) = argminy ||βe1 – H(k)y||2

x(k) = x(0) + [v(1) ... v(k)] y(k)

Numerical Parallel Algorithms for Large Scale Macroeconometric Models 345

For the BiCGSTAB method we need to compute 6 saxpy operations, 4 inner products

and 2 matrix-vector products per iteration and to store matrix A and 7 vectors of size n. The

computational complexity of the method is)(2n like the other Krylov methods. The op-

eration count per iteration cannot be used to directly compare the performance of

BiCGSTAB with GMRES because GMRES converges in much less iterations than

BiCGSTAB. We have implemented these iterative methods and run experiments to deter-
mine the possible advantages of them over the direct methods. The results of our

experiments are presented in the next section.

The other alternative to solve a linear system b Ax is the direct method that con-

sists in two steps:

 First, the matrix A is factorized, LUA where L is a lower triangular matrix with 1s

on the main diagonal and U is an upper triangular matrix; in the case of symmetric positive

definite matrices, we have tLLA .

 Second, we have to solve two linear systems with triangular matrices: bLy and

yUx .

The standard LU factorization algorithm with partial pivoting is [15]:

The

computational complexity of this algorithm is)2/2(3n . After we obtain the matrix factors

BiCGSTAB

Given an initial solution x(0) compute r = b – Ax(0)

ρ0 = 1, ρ1 = r(0)‟r(0), α = 1, ώ = 1, p = 0, v = 0

for k = 1,2, ... until convergence

 β = (ρk/ ρk-1)(α/ώ)

 p = r + β(p- ώv)

 v = Ap

 α = ρk/(r(0)‟v)

 s = r – αv
 t = As

 ώ = (t‟s)(t‟t)

 x(k) = x(k-1) + αp + ώs

 r = s – ώt

 ρk+1 = - ώr(0)‟t

endfor

Right-looking LU factorization

for k =1:n-1 do

find ν with k≤ ν≤n such that

),:(),(knkAkA

A(k,k:n)↔A(ν, k:n)
p(k) = ν
if A(k,k) ≠ 0 then
 A(k+1:n, k) = A(k+1:n,k)/A(k,k)
 A(k+1:n,k+1:n) = A(k+1:n,k+1:n) - A(k+1:n, k) A(k, k+1:n)

endif

endfor

346 Bogdan OANCEA, Tudorel ANDREI, Stelian STANCU, Andreea Iluzia IACOB

L and U we have to solve two triangular systems: bLy and yUx . These systems are

solved using forward and backward substitution that have a computational complexity of

)(2n , so the most important computational step is the matrix factorization. That‟s why we

have to show a special attention to the algorithms for matrix factorization.

In practice, using actual computers with memory hierarchies, the above algorithm is not ef-

ficient because it uses only level 1 and level 2 BLAS operations [18], [11]. As it is well-

known, level 3 BLAS operations [10] have a better efficiency than level 1 or level 2 opera-

tions. The standard way to change a level 2 BLAS operations into a level 3 BLAS operation

is delayed updating. In the case of the LU factorization algorithm we will replace k rank-1

updates with a single rank-k update.

We present a block algorithm for LU factorization that uses level 3 BLAS operations.

The nn matrix A is partitioned as in Figure 1. The 00A block consists of the first b col-

umns and rows of the matrix A.

Figure no. 1 Block LU factorization

We can derive the following equations starting from A=LU:

000000 AUL (1)

100010 AUL (2)

010100 AUL (3)

1111110110 AULUL (4)

Equations (1) and (2) perform the LU of the first b columns of the matrix A. Thus we

obtain 00L , 10L and 00U and now we can solve the triangular system from equation (3) that

gives 01U . The problem of computing 11L and 11U reduces to compute the factorization of

the submatrix 01101111' ULAA that can be done using the same algorithm but with

'11A instead of A. The block LU factorization algorithm can now be derived easily: suppose

we have divided the matrix A in column blocks with b columns in each block. The complete

block LU factorization algorithm is given below.

Numerical Parallel Algorithms for Large Scale Macroeconometric Models 347

The process of factorization is shown in Figure 2. The factorization of the current col-

umn block is done with the usual BLAS 2 operations and the active part of the matrix A will
be updated with b rank-one updates simultaneously which in fact is a matrix-matrix multip-

lication (level 3 BLAS). If bn almost all floating point operations are done in the

matrix-matrix multiplication operation.

Figure no. 2 Block LU factorization with BLAS 3 operations

Block LU factorization

for kb =1 to n-1 step b do

 bf = min(kb + b – 1, n)

 {LU factorization of A(kb : n, kb : bf) with BLAS 2}

 for k = kb to bf do

 find k such that

),:(),(iniAikA

 if i ≠ k then

 swap rows i and k

 endif

 A(i+1:n, i) = A(i+1:n, i)/A(i,i)

 A(i+1:n, i+1: bf) = A(i+1:n, i+1: bf) - A(i+1:n, i) A(i, i+1: bf)

 endfor

 {Let
~

L be unit lower triangular matrix bb stored in):,:(fbfb bkbkA }

 Solve triangular systems):1,:(
~

nbbkAZL ffb

 Update ZnbbkA ffb):1,:(

 {Delayed updating}
):1,:():,:1():1,:1():1,:1(:: nbbkAbknbAnbnbAnbnbA ffbfbfffff

endfor

348 Bogdan OANCEA, Tudorel ANDREI, Stelian STANCU, Andreea Iluzia IACOB

3. THE IMPLEMENTATION OF PARALLEL ALGORITHMS FOR LINEAR

SYSTEMS

For very large matrices that result for the econometric models presented above, the

serial algorithms may not be appropriate to solve the models. Thus, parallel versions of the

above presented algorithms have to be developed and implemented.

Software packages for solving linear systems have known a powerful evolution during

the last 35 years. LINPACK was the first portable linear system solver package followed at

the end of „80 by a new software package for linear algebra problems LAPACK [1] which

was adapted for parallel computation resulting ScaLAPACK [7] library. Other software

packages for parallel computation have been developed over the years: PETSc [3] is a paral-

lel library that implements iterative methods, PARPACK [20] package can handle matrices

in sparse format; SuperLU [26] package implements a supernodal parallel algorithm for
sparse matrix factorization.

Although parallel algorithms for linear systems are studied and very well understood

nowadays, the availability for general purpose, high performance parallel linear algebra li-

braries is limited by the complexity of implementation. Almost all parallel libraries have a

complicated interface, very difficult to use due to the complexity of the parallel algorithms.

We have developed a library that implements parallel algorithms for linear systems

solving - PLSS (Parallel Linear System Solver). The library was designed with an easy to

use interface, which is almost identical with the serial algorithms‟ interface. This makes the

software developing process very easy because the parallelism is hidden from the user and

the algorithms are almost identical with their serial versions. This goal was obtained by

means of data encapsulation in opaque objects that hide the complexity of data distribution

and communication operations. The PLSS library was developed in C and for the communi-
cation between processors we used MPI library [24], which is a “de facto” standard for

message passing environments.

The PLSS library is structured on four levels, as we can see in Figure no. 3.

Native BLAS

library

Native MPI

library

Standard C library

The interface

PLSS-BLAS

The interface

MPI-BLAS

The interface PLSS-

Standard C library

Data distribution level

Object manipulation

routines

Application Program Interface – provides routines for

parallel linear system solving

Architecture dependent level

Architecture independent

level

Data distribution and

encapsulation level

API level

Local BLAS routines

Figure no. 3 PLSS structure

The first level contains the standard BLAS, MPI and C libraries. This level is architec-

ture dependent. The second level provides the architecture independence, which implements

the interface between the first level and the rest of the PLSS package. The next level imple-
ments the data distribution model – all details regarding distribution of vectors and matrices

on processors are localized at this level. At this level, the data are encapsulated in objects

that are opaque to users, hiding thus the complexity of communication operations.

Numerical Parallel Algorithms for Large Scale Macroeconometric Models 349

This level defines:

Objects that describe vectors and matrices.

Object manipulation routines – object creation, destroying routines and object ad-
dressing routines.

Local BLAS routines. Because matrices and vectors are encapsulated in objects, we
must extract some information from these objects such as vector/matrix dimension, their lo-

calization etc., before calling a BLAS routine to perform some computations. Local BLAS

routines extract these information and then call the standard BLAS routines.

 Communication functions – these functions implement the communication opera-
tions between processors.

The top level of the PLSS library is, in fact, the application programming interface.

PLSS API provides a number of routines that implements parallel BLAS operations and pa-
rallel linear system solving operations: direct methods based on LU and Cholesky matrix

factorization and nonstationary iterative methods GMRES, BiCG, BiCGSTAB.

The PLSS library uses a logical bidimensional mesh of processors. We have chosen

this model of processor interconnection based on scalability studies of the matrix factoriza-

tion algorithms [22]. In this case, the isoefficency function [17] for LU matrix factorization

is)(ppO , that means a highly scalable algorithm.

For a linear system Ax = b, vectors x and b are distributed on processors in a block

column cyclic model and the system matrix A is distributed according to the vector distribu-

tion – the column A*,j will be assigned to the same processor as xj.

We also present some examples of parallel implementation of some basic operations for the

PLSS package. Matrix-vector multiplication Ax = y is a frequent operation for linear system

solving algorithms. Figure 4 shows the necessary steps to implement parallel matrix-vector

multiplication.

Figure no. 4 Matrix-Vector multiplication

350 Bogdan OANCEA, Tudorel ANDREI, Stelian STANCU, Andreea Iluzia IACOB

At the first step (Figure 4a) the vector components are distributed on the processors

columns. After vector distribution it follows a step consisting in local matrix-vector multip-

lications (Figure 4b). At this moment each processor owns a part of the final result (Figure

4c). At the last step, these partial components are summed up along the processor rows

(Figure 4d).

Rank-1 update is another basic operation which consists in the following computation:
A = A + yxt. Assuming that x and y have identical distributions on processor columns and

rows, each processor has the data needed to perform the local computations.

These two basic operations, matrix-vector multiplication and rank-1 update can be

used in order to derive a parallel algorithm for matrix-matrix multiplication. It is easy to ob-

serve that the product C = AB can be decomposed in a number of rank-1 updates:

C = a0b0
t + a1b1

t + … + an-1bn-1
t (5)

where ai are the columns of matrix A and bi
t are the rows of matrix B.

The parallelization of matrix-matrix multiplication is equivalent with the paralleliza-

tion of a sequence of rank-1 updates. In order to obtain an increase in performance, the rank-

1 update can be replaced with rank-k update, but, in this case, x and y will be rectangular

matrices. We conclude this section with the implementation of the block Cholesky factoriza-

tion. Cholesky factorization consists in finding the factorization of the form A = LLT , where
A is a symmetric positive definite matrix. Figure 5 shows the partitioning of matrices A and

L.

 A_11 *

A =

 A_21 A_22

 L_11 0

L =

 L_21 L_22

Figure no. 5 The partitioning of matrices A and L

From A = LLT we can derive the following equations:

 A11 = L11L11
T (6)

 L21L11
T = A21 (7)

 A22 – L21L21
T = L22L22

T (8)

If matrix L will overwrite the inferior triangle of A, then the Cholesky factorization

consists in the following three computations:

A11 ← L11 = Cholesky(A11) (9)

A21 ← L21 = A21L21
-T (10)

A22 ← A22 –L21L21
T

 (11)

The dimension of matrix block A11 is computed such that A11 will be stored on only

one processor and the factorization from equation (9) will be a local operation. Under these

conditions A21 is stored on the same column of processors and L11 will be distributed to these

processors. The parallel Cholesky factorization can be described as follows:
Step 1: Determine the block size such that A11 is stored on a single processor.

Numerical Parallel Algorithms for Large Scale Macroeconometric Models 351

Step 2: Split matrix A into blocks A11, A21, A_22 according to the block size computed

at the previous step.

Step 3: Compute the Cholesky factorization of submatrix A11 – this is a local opera-

tion.

Step 4: Distribute A11 on the column of processors.

Step 5: Solve the triangular system given by equation (8) – this is a local operation be-
cause A11 was distributed at the previous step on all processors that participate at this

computation.

Step 6: Compute the symmetric rank-k update given by equation (9).

Step 7: Recursive, apply the same steps to matrix A22.

The current version of the PLSS library implements the following parallel BLAS rou-

tines:

Table no. 1 Level 1 BLAS routines

int Axpy(Object alpha, Object x, Object y) computes yxxy

int Dot(Object x, Object y, Object alpha) computes the dot product yxT

int Nrm2(Object x, Object alpha) computes the euclidian norm of vector x.

int Scal(Object x, Object alpha) scales vector x : xxx

int Iamax(Object x, Object k, Object xmax)
computes the maximum value (xmax) and

the global offset (k) for object x.

Table no. 2 Level 2 BLAS routines

int Ger (Object alpha, Object x, Object A) computes AxyA T

int Gemv (int transa, Object alpha, Object A,

Object x, Object beta, Object y)

computes the matrix-vector multiplication:

yAxy

int Symv (int uplo, Object alpha, Object A,

Object x, Object beta, Object y)

computes the matrix-vector multiplication

for symmetric matrices : yAxy

int Trmv (int uplo, int trans, int diag, Object A,
Object x)

computes the matrix-vector multiplication for
triangular matrices.

int Trsv (int uplo, int trans, int diag, Object A,
object x)

solves the linear system Ax=b where A is a
triangular matrix.

Table no. 3 Level 3 BLAS routines

int Syrk (int uplo, int trans, Object alpha, Object A,

Object beta, Object C)

symmetric rank-k update:

CAAC T

int Trsm (int side, int uplo, int trans, int diag, Object

alpha, Object A, Object C)

solves the multiple right hand linear

system: AX = B

int Gemm(int trans, int transb, Object alpha, Object A,

Object B, Object beta, Object C)
Matrix multiplication: CABC

The name of routines and the significance of parameters trans, side, uplo, diag, are the

same as for the original BLAS library.

For matrix factorization, PLSS library has two routines:

352 Bogdan OANCEA, Tudorel ANDREI, Stelian STANCU, Andreea Iluzia IACOB

 Cholesky(Object A) – computes the Cholesky factorization of a SPD matrix A.

 LU(Object A, Object pivots) – computes the LU factorization with partial pivoting.
Finally, the PLSS package contains routines that implement the GMRES, BiCG and

BICGSTAT iterative methods.

4. EXPERIMENTAL RESULTS

We have conducted performance experiments for both serial and parallel versions of

the algorithms for two iterative methods – GMRES(35) and BiCGSTAB and for the direct

method that consists in matrix factorization. For our experiments we have considered nonli-

near systems containing between 2000 and 20000 variables. The tolerance for the solution

was fixed at 10-4 for all methods. The serial versions of the algorithms are implemented us-

ing the C programming language under the Linux operating system. Both iterative methods

behave relatively well for our problems but BiCGSTAB is slightly less expensive in number

of floating point operations and memory requirements. Table 4 shows the number of float-

ing point operations per iteration for each Newton variant to converge and the amount of
memory needed.

Table no. 4 The number of MFLOP/iteration and memory requirements

GMRES(35) BiCGSTAB

Size MFLOP Memory (Mb) Size MFLOP Memory

(Mb)

2000 149 0.66 2000 135 0.38

4000 261 1.51 4000 260 0.66

8000 962 2.82 8000 744 1.32

12000 3800 4.05 12000 2670 1.88

16000 8310 5.65 16000 6790 2.68

20000 21540 7.24 20000 20830 3.22

These results show that the iterative methods can be a good alternative to direct me-

thods for systems containing a higher number of equations mainly due to the low memory

requirements. This allow that large problems to be solved on a single workstation. Although

the data used for such problems fits on a single workstation internal memory, the time

needed to solve them can be very high. In practice, a compromise between memory re-

quirements and the solving time is always the best solution. For the cases when the time is

too high, parallel solvers are necessary.

Parallel versions of the algorithms implemented using the PLSS package were ex-

ecuted on a cluster of workstations, connected through a 100Mb Ethernet local network,

each station having 512 MB of main memory. The PLSS package uses the MPICH imple-
mentation of the MPI library and, for the local BLAS operations, uses the ATLAS library

[25] that provides a high performance for local operations. The ATLAS library can be re-

placed with a vendor specific library, but this would introduce architecture dependence. We

have tested the PLSS package for both iterative and direct methods, for 1, 2, 4, 8, and 16

processors. The dimension of the matrix was maintained fixed with 20000 rows and col-

umns. Figure 6(a) shows the speedup of the parallel algorithms for the case when iterative

methods are used to solve the model and figure 6(b) shows the speedup in the case of using

direct methods.

Numerical Parallel Algorithms for Large Scale Macroeconometric Models 353

Speedup for iterative methods

0

1

2

3

4

5

6

1 2 4 8 16

Number of processors

S
p

e
e

d
u

p
GMRES BiCGSTAB

Figure no. 6.1 The speedup for parallel versions of the algorithms -

Parallel iterative methods

Speedup for the LU method

0

1

2

3

4

5

6

7

8

9

1 2 4 8 16

Number of processors

S
p

e
e

d
u

p

Figure no. 6.2 The speedup for parallel versions of the algorithms-

Direct method (LU factorization)

As we can observe, the speedup for the GMRES is slightly better than for the

BiCGSTAB method. Compared to the iterative methods, the direct method based on matrix

factorization shows a better speedup, meaning that these algorithms are more scalable than

the iterative ones. They are better suited for very large problems which run on parallel envi-

ronments with a large number of processors.

354 Bogdan OANCEA, Tudorel ANDREI, Stelian STANCU, Andreea Iluzia IACOB

5. CONCLUSIONS

In this paper we have developed some algorithms to solve macroeconometric models

with forward-looking variables based on the Newton method for nonlinear systems of equa-

tions. The most difficult step for Newton methods represents the resolution of a large linear

system for each iteration. We also compared the performances resulted by solving this linear

system using two iterative methods and the direct method.

For serial algorithms, Krylov methods proved to be an interesting alternative to exact

Newton method with LU factorization for large systems. The computational cost and the

memory requirements are inferior in the case of Krylov methods compared with LU factori-

zation due to a low computational complexity.

Regarding the parallel algorithms, we have developed a parallel library PLSS with an

interface easy to use. All the complexity of the parallel algorithms is hidden from the users
by encapsulating the matrices and vectors in opaque objects. The experiments using our li-

brary for the direct methods using LU factorization showed a better scalability compared to

iterative methods because the iterative algorithms involve a global communication step at

the end of each iteration. These results recommend the use of parallel algorithms for very

large systems in parallel environments with a large number of processors.

References

[1] Anderson, E., Z. Bai, J. Demmel, J., Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,

A. Mckenney, S. Ostrouchov, And D. Sorensen (1992): LAPACK Users’s Guide. SIAM,
Philadelphia.

[2] Armstrong, J., R. Black, D. Laxton, and D. Rose (1995): “The Bank of Canada‟s New Quarterly
Projection Model QPM. Part 2: A Robust Method for Simulating Forward-Looking Models”,

Technical Report No. 73, Ottawa: The Bank of Canada.
[3] Balay, S., K. Buschelman, V. Eijkhout, V. D. Gropp, D. Kaushik, M.G. Knepley, L. C. Mcinnes,

B. F. Smith, and H. Zhang (2004): PETSc Users Manual, Technical Report, ANL-95/11 -
Revision 2.1.5, Argonne National Laboratory.

[4] Black, R., D. Laxton, and R. Tetlow (1994): “The Bank of Canada‟s New Quarterly Projection
Model QPM. Part 1: The Steady-State Model”, Technical Report No. 72, Ottawa: The Bank of
Canada, November.

[5] Brayton, F., and P. Tinsley (1996): “A guide to FRB/US : A Macroeconomic Model of the United

States”, Technical Report, Finance and Economics Discussion Series, Federal Reserve Board.
[6] Brayton, F., E. Mauskopf, D. Reifschneider, P. Tinsley, and J. Williams (1997): “The Role of

Expectations in the FRB/US Macroeconomic Model”, Federal Reserve Bulletin.
[7] Choi, J., J. Dongarra, R. Pozo, and D.W. Walker (1992): ScaLAPACK : a scalable linear algebra

library for distributed memory concurrent computers. Proceedings of the fourth Symposium on
the Frontiers of Massively Parallel Computers, IEEE Comput. Soc. Press, 120-127.

[8] Coletti, D., B. Hunt, D. Roseand, And R. Tetlow(1996): “The Bank of Canada‟s New Quarterly
Projection Model QPM. Part 3: The Dynamic Model”, Technical Report No. 75, Ottawa: The

Bank of Canada.

[9] Creel, M., and W. L. Goffe (2008): “Multi-core CPUs, Clusters, and Grid Computing: a

Tutorial”, Computational Economics, 32 (4), 353-382.
[10] Dongarra, J., J. Du Croz, S. Hammarling, and I. Duff (1990): “A set of level 3 basic linear

Algebra subprograms”, ACM Transactions on Mathematical Software, 16 (1), 1-17.

Numerical Parallel Algorithms for Large Scale Macroeconometric Models 355

[11] Dongarra, J., J. Du Croz, S. Hammarling, and R. Hanson (1988): “An extended set of

FORTRAN basic linear algebra subprograms”, ACM Transactions on Mathematical Software, 14,
(1), 1-17.

[12] Doornik, J. A., D. F. Hendry, and N. Shephard (2007): “Parallel Computation in Econometrics: A
Simplified Approach” Chapter 15 in Handbook of Parallel Computing and Statistics, Chapman &
Hall/CRC, 449-476.

[13] Fair, R.C., and J. B.Taylor (1983): “Solution and Maximum Likelihood Estimation of Dynamic
Nonlinear Rational Expectations Models”, Econometrica, 51(4), 1169-1185.

[14] Fisher, P., (1992): Rational Expectations in Macroeconomic Models. Kluwer Academic
Publishers, Dordrecht.

[15] Golub, G. H., and C. F. Van Loan (1996): Matrix Computations, Johns Hopkins Series in
Mathematical Sciences, The Johns Hopkins University Press.

[16] Isard, P. (2000): “The Role of MULTIMOD in IMF‟s Policy Analysis”, Technical Report IMF
Policy Discussion Paper, International Monetary Fund, Washington DC.

[17] Kumar, V., Grama, A., Gupta, A., and Karypis, G., (1994): Introduction to Parallel Computing,

The Benjamin/Cummings Publishing Company.
[18] Lawson, C. L., R. J. Hanson, D. R. Kincaid, and F. T. Krogh (1979): “Basic linear algebra

subprograms for Fortran usage”, ACM Transactions on Mathematical Software, 5 (3), 308-323.
[19] Levin, J., and R. Tryon (1997): “Evaluating International Economic Policy with the Federal

Reserves Global Model”, Federal Reserve Bulletin.
[20] Maschhoff, K. J., and D. C. Sorensen (1996): “A portable implementation of ARPACK for

Distributed Memory Parallel Architectures”, Proceedings of the Copper Mountain Conference on
Iterative Methods.

[21] Masson, P., S. Symanski, and G. Meredith (1990): “MULTIMOD Mark II: A Revised and
Extended Model”, Technical Report, Occasional paper 71, International Monetary Fund,
Washington DC.

[22] Oancea, B., and R. Zota (2003): “The design and implementation of a dense parallel linear system
solver”, Proceedings of the 1st Balkan Conference in Informatics, Thessaloniki, Greece.

[23] Saad, Y. (1996): Iterative Methods for Sparse Linear Systems, PWS Publishing Company.
[24] Snir, M., S. W. Otto, S. Huss-Lederman, D. W. Walker, And J. Dongarra (1996): MPI: the

Complete Reference, MIT Press.

[25] Whaley, R. C., A. Petitet, and J. Dongarra (2001): “Automated Empirical Optimization of
Software and the ATLAS project”, Parallel Computing, 27(1-2), 3-35.

[26] Xiaoye, S. Li, and J. W. Demmel (2003): “A Scalable Distributed-Memory Sparse Direct Solver
for Unsymmetric Linear Systems”, ACM Transactions on Mathematical Software, 29 (2), 110-
140.

Acknowledgements

This work was supported by CNCSIS – UEFISCSU, project number PNII – IDEI code

1793/2008, financing contract no. 862/2009.

356 Bogdan OANCEA, Tudorel ANDREI, Stelian STANCU, Andreea Iluzia IACOB

