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Abstract 

Relevant estimation of loss reserves related to general insurance activity was and is one of the 

most important issues for insurance companies. Maintenance of loss reserves at the right level 

represents the key condition of insurance monitoring authorities as the result of performance indica-

tors of their activity depends on the value of these reserves. The forecasted value of future loss 

referred to prior events represents the loss reserve. In this paper, we present stochastic methods 

(Christofides method) of estimating the loss reserves, especially those of incurred but not reported re-

serves. The stochastic methods presented in the paper, in contrast to the determinist ones, adjust the 

result better and offer more information referring to the quality of data and exactness level of damage 

reserve forecast.   
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1. INTRODUCTION 

Almost all actuarial methods for estimating claims reserves have an underlying statis-

tical model. Obtaining estimates of the parameters is not always carried out in a formal 

statistical framework and this can lead to estimates which are not statistically optimal. These 

traditional methods generally produce only point estimates. 

Formal statistical models are used extensively in data analysis elsewhere to obtain a 

better understanding of the data, for smoothing and for prediction. Explicit assumptions are 

made and the parameters estimated via rigorous mathematics. Various tests can then be ap-

plied to test the goodness of fit of the model and, once a satisfactory fit has been obtained, 

the results can be used for prediction purposes. 

Deterministic reserving models are, broadly, those which only make assumptions about 

the expected value of future payments. Stochastic models also model the variation of those 

future payments. By making assumptions about the random component of a model, stochas-

tic models allow the validity of the assumptions to be tested statistically, and produce 

estimates not only of the expected value of the future payments, but also of the variation 

about that expected value. 

A deterministic model simply makes a point estimate of the expected future payments 

in a given period. The one sure thing we can say about these expected payments, is that the 

actual payments will be different from expected. Deterministic models do not give us any 

idea whether this difference is significant. Stochastic models enable to produce a band with-

in which the modeller expects payments to fall with a certain level of confidence, and can be 

used as an indication as to whether the assumptions of the model hold good. 

Also a stochastic model allows to replace the individual data values by a summary that 

both describes the essential characteristics of the data by a limited number of parameters, 

and distinguishes between the systematic and random influences underlying the data. 

All modelling, whether based on the traditional actuarial techniques such as the chain 

ladder or on more formal statistical models, requires a fair amount of skill and experience on 

the part of the modeller. All these models are attempting to describe the very complex 

claims process in relatively simple terms and often with very little data. The advantage of 

the more formal approach is that the appropriateness of the model can be tested and its 

shortcomings, if any, identified before any results are obtained. 

The basic chain ladder assumptions can be stated as follows: 

a) Each accident year has its own unique level. 

b) Development factors for each period are independent of accident year or, equiva-

lently, there is a constant payment pattern (there is a stable pattern to the way that claims 

have been settled in the past and that this pattern will continue into the future) 

These assumptions can now be used to define the model more formally. 

Let: Xij – be the incremental paid claims for accident year i paid during development 

period j 

Si  – be the ultimate claim payments for the i-th accident year 

pj – be the proportion of the amount paid during the j-th development period, and 

∑ =
j

jp 1  
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Thus the chain ladder model can be described by the following multiplicative model: 

 

ijij SpX ×=        (1) 

 

 

2. ESTIMATING THE PARAMETERS OF THE FORMAL CHAIN LADDER 

MODEL 
 

As the main set of relations involves products the usual approach is first to make these 

linear by taking logarithms and then use multiple regression to obtain estimates of the para-

meters in log-space. It will eventually be necessary to reverse this transformation to get back 

to the original data space. 

Dealing with the main set of equations is relatively easy. Taking logarithms we obtain: 

 

)ln()ln()ln( jiij pSX +≈       (2) 

 

For ease of reference the parameters are redefined: ln(Xij)= Yij ,    ln(Si)=ai ,   ln(pj)=bj 

and an error term introduced. Thus the model to be fitted is described by: 

ijjiij baY ε++=        (3) 

with b0=0 and ijε ~ N(0,σ2) 

We assume that the error values are identically and independently distributed with a 

normal distribution whose mean is zero and variance some fixed σ
2
. If we assume that 

ijε has a normal distribution, thus the incremental paid claims Xij has a log-normal distribu-

tion: 

ijε ~ )ln(),0( 2
ijij XYN =⇒σ ~ ( )⇒][],[ ijij YVarYEN  

)exp( ijij YX =⇒ ~ ( )][],[log ijij YVarYEN     

 (4) 

Thus we have to calculate the expected value and the variance of Yij and in the 

second step to revert back to the original space. 

The expected value of Yij is: jiijjiij babaEYE +=++= ][][ ε   (5) 

The variance of Yij is: ( ) 2][][ σ+= ijij YEVarYVar   (6) 

First we have to compute the expected value of Yij: jiij baYE +=][  

Parameters ai and bj have to be estimated in a multiple regression framework 

Suppose that we have a )44( × data triangle Xij: 

 

 

 

 

 

i 0 1 2 3

0 x00 x01 x02 x03

1 x10 x11 x12 x 13

2 x20 x21 x 22 x 23

3 x30 x 31 x 32 x 33

j

i 0 1 2 3

0 y00 y01 y02 y03

1 y10 y11 y12 y 13

2 y20 y21 y 22 y 23

3 y30 y 31 y 32 y 33

j

 

ln  ⇒⇒⇒⇒ 
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The following table is the form most convenient for the regression facility. 

 
Table no. 1 The design matrix X 

year of ori-
gin 

development 
year 

Y-variables (depend-
ent variables) 

Design matrix X  
(columns are the independent variables) 

i j Xij Yij a0 a1 a2 a3 b1 b2 b3 

0 0 x0,0 ln(x0,0) 1 0 0 0 0 0 0 

0 1 x0,1 ln(x0,1) 1 0 0 0 1 0 0 

0 2 x0,2 ln(x0,2) 1 0 0 0 0 1 0 

0 3 x0,3 ln(x0,3) 1 0 0 0 0 0 1 

1 0 x1,0 ln(x1,0) 0 1 0 0 0 0 0 

1 1 x1,1 ln(x1,1) 0 1 0 0 1 0 0 

1 2 x1,2 ln(x1,2) 0 1 0 0 0 1 0 

2 0 x2,0 ln(x2,0) 0 0 1 0 0 0 0 

2 1 x2,1 ln(x2,1) 0 0 1 0 1 0 0 

3 0 x3,0 ln(x3,0) 0 0 0 1 0 0 0 
 

So we have a multiple regression model that in matrix form can be written as: 

EXY +⋅= β        (7) 

with: 

Y – the matrix of the dependent variables  

X – the design matrix  

β – the matrix of the parameters (the independent variables) to be estimated  

E – matrix of the error terms  

 

The regression takes the ln(Xij) or Yij values as the dependent variable and each of the 

columns of the matrix X as the independent variables. 

Applying least square estimation, the parameters estimates are given by the following 

expression: 

YXXX
TT ⋅= −1)(β       (8) 

where: 

 X – the design matrix  

X
T 

 – the transpose of the design matrix  

Y – the design of the dependent variables 

The coefficients are the parameter estimates and are in the same order as the columns 

of the design matrix. 

 

3. REGRESSION ANALYSIS: STATISTICAL TESTS 

Statistics are necessary to test the appropriateness of the resulting model. In this case 

we can apply various diagnostic tests to test the significance of the overall model, to test the 

significance of the parameters, and to test the assumptions specific to error terms. 

• The significance of the overall model is tested with ANOVA applying and F 

test and calculate the coefficient of determination R
2
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pnSSE

pSSR
F

−
=

/

/
      (9) 

where: SST – total deviation  

SSR – explained deviation  

SSE – unexplained deviation  

n – number of observation (known payments), p – number of parameters 

If the αFF ≥  the null hypothesis Ho (all slope coefficient are simultaneously zero) is 

rejected and the model is accepted. 

 

SST

SSE

SST

SSR
R −== 12

      (10) 

 

the closer to 1, the higher the explanatory value of the model 

• The significance of the parameters is tested by t- Student test. The null hy-

pothesis is Ho: parameter is not significantly different from 0. If t-stat is larger than critical 

value, ( αtt ≥ ) Ho is rejected - the parameter is significantly different from 0 and the de-

pendent variable is explained by independent variable. 

• To estimate the parameters of the regression model we use a least square 

method that is by minimize the sum of the squares of the error terms ijε . We assume that 

ijε has a normal distribution ijε ~ N(0,σ
2
). This assumption can be tested applying Q-Q 

plots. Each residual is plotted against its expected value. If the plot is linear normality as-

sumption is satisfied. 

The independence of the residual terms can be tested using the Durbin Watson test. 

 

4. PREDICTING FUTURE PAYMENTS AND THEIR STANDARD ERRORS 
 

In order to derive estimates of the model parameters it was convenient to take loga-

rithms and work in log-space. To obtain results in the original space it is necessary to 

reverse this transformation. 

Obtaining the parameter estimates in log-space is relatively straightforward. To revert 

back to the original space is not so simple and it is necessary to use the relationships be-

tween the parameters of the log-normal distribution and the underlying normal distribution. 

 

( )][5,0][exp)( ijijij YVarYEXE ⋅+=             (11) 

( ) ( )][][2exp][2][2exp)( ijijijijij YVarYEYVarYEXVar +⋅−⋅+⋅=        (12) 

 

So the first step is to derive the predicted values and their variations in log-space. The 

predicted values in log-space are obtained from the estimates of the parameters produced 

by the regression applying relation (5). For example, the first future value to be predicted is 

for accident year 1 development year 3 and this is given by  E(Y1,3)=a1+b3  

To obtain the variance of Yij according to (6), we have to calculate each component: 
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a)  ( )][ ijYEVar  – the variance of ][ ijYE  

b)  
2σ – the model variance 

( )][ ijYEVar  is obtained from its symmetric variance-covariance matrix: 

  ( ) T
F

T
Fij XXXXYEVar ⋅⋅⋅= −12 )(][ σ     (13) 

with: 

2σ  – the model variance 

FX  – the design matrix of future value (future design matrix) 

T
FX  – the transpose of the future design matrix 

1)( −
XX

T
 – the model information matrix 

The variance-covariance matrix is a square and symmetric with each side equal to the 

number of future values to be projected.  The diagonal elements contain the variances of 

each of each of these values and are in the same order as the future design matrix elements. 

The design matrix of future values XF following the same format as the original design 

matrix: 

 
Table no. 2 The future design matrix X

F
 

year of 
origin 

development 
year 

Y-variables (de-
pendent variables) 

The future design matrix X  
(columns are the independent vari-

ables) 

i j Yij a0 a1 a2 a3 b1 b2 b3 

1 3 Y1,3 0 1 0 0 0 0 1 

2 2 Y2,2 0 0 1 0 0 1 0 

2 3 Y2,3 0 0 1 0 0 0 1 

3 1 Y3,1 0 0 0 1 1 0 0 

3 2 Y3,2 0 0 0 1 0 1 0 

3 3 Y3,3 0 0 0 1 0 0 1 

 
Thus the variances for the future values in log-space are the sum of the variance-

covariance matrix values (values situated on the principals diagonal) and the model va-

riance
2σ  

 

( ) 2][][ σ+= ijij YEVarYVar      (6) 

 

When we apply a regression method, the model variance
2σ is a not known value and 

we use an unbiased estimator 
2s   

pn

EE
s

T

−
=2

       (14) 

with: E – the matrix of the error terms, n-p – the degrees of freedom 
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Finally the future values )( ijXE and their variation )( ijXVar are calculated from 

the estimates obtained in the log-space according to formulas (11) and (12) 

The following table shows the projected values of payments, their variances and stan-

dard errors 

 
Table no. 3 The projected values of payments and their variances 

i j ai bj E(Yij) Var[Yij] E(Xij) Var(Xij) Se(Xij) 

1 3 a1 b3 E(Y1,3) Var[Y1,3] E(X1,3) Var(X1,3) Se(X1,3) 

2 2 a2 b2 E(Y2,2) Var[Y2,2] E(X2,2) Var(X2,2) Se(X2,2) 

2 3 a2 b3 E(Y2,3) Var[Y2,3] E(X2,3) Var(X2,3) Se(X2,3) 

3 1 a3 b1 E(Y3,1) Var[Y3,1] E(X3,1) Var(X3,1) Se(X3,1) 

3 2 a3 b2 E(Y3,2) Var[Y3,2] E(X3,2) Var(X3,2) Se(X3,2) 

3 3 a3 b3 E(Y3,3) Var[Y3,3] E(X3,3) Var(X3,3) Se(X3,3) 

Total      

 

In the table above the future payments )( ijXE  is the estimate outstanding loss re-

serves for each accident year and the sum of all the projected values ∑ )( ijXE  indicate 

the total estimated reserve. 

 

5. ACCIDENT YEAR AND OVERALL STANDARD ERRORS 

Calculating the variances or standard errors across accident years and in total requires 

one further step involving the covariances. The information needed is in the last matrix 
T
F

T
F XXXX ⋅⋅⋅ −12 )(σ   together with the values calculated for E(Xij) and their va-

riances. The variance of the sum of two values Xij and Xkl is given by: 

 

),cov(2)()()( klijklijklij XXXVarXVarXXVar ++=+  (15) 

 

and this extends to sums of more than two values by including all pairs of covariances.  

In the case of log-linear models the covariances can be calculated in the original space 

by the following convenient formula: 

 

( )1)),exp(cov()()(),cov( −⋅⋅= klijklijklij YYXEXEXX  (16) 

 

This process can be applied to obtain the variance and then the standard errors for any 

combination of values, for instance, for each accident year or each payment year and more 

interestingly for the overall total reserve estimate. 

So the variance of the total reserves estimates will include all possible combinations of 

covariances (of pairs) of values involved in the calculation.  

The calculations are as in the previous example and can be tabulated easily to produce 

the following matrix of covariances. 
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Table no. 4 The matrix of covariances of estimate reserves 

(i,j) (1,3) (2,2) (2,3) (3,1) (3,2) (3,3) 

(1,3) – cov(X1,3,X2,2)  cov(X1,3,X2,3) cov(X1,3,X3,1) cov(X1,3,X3,2) cov(X1,3,X3,3) 

(2,2) cov(X1,3,X2,2) – cov(X2,2,X2,3) cov(X2,2,X3,1) cov(X2,2,X3,2) cov(X2,2,X3,3) 

(2,3) cov(X1,3,X2,3) cov(X2,2,X2,3) – cov(X2,3,X3,1) cov(X2,3,X3,2) cov(X2,3,X3,3) 

(3,1) cov(X1,3,X3,1) cov(X2,2,X3,1) cov(X2,3,X3,1) – cov(X3,1,X3,2) cov(X3,1,X3,3) 

(3,2) cov(X1,3,X3,2) cov(X2,2,X3,2) cov(X2,3,X3,2) cov(X3,1,X3,2) – cov(X3,2,X3,3) 

(3,3) cov(X1,3,X3,3) cov(X2,2,X3,3 cov(X2,3,X3,3) cov(X3,1,X3,3) cov(X3,2,X3,3) – 

Total = ∑ ),cov( klij XX  

The diagonal elements are left blank as the values here should be the variances which 

were estimated previously. The matrix is symmetric, as is to be expected, and so summing 

the range produces the sum of covariances of all possible pairs of values. 

Thus the overall variance of the estimate outstanding loss reserves is the sum of two 

values: the sum of the variances of the predicting values from table 3 -∑ )( ijXVar and the 

sum of all pairs of covariances from table 4 - ∑ ),cov( klij XX  

After we estimated the future payments for each accident year i we can compute the 

confidence interval for these future payments otherwise for estimated reserves: 

)]()([ ijijij XSetXEX ⋅±∈ α      (17) 

 

6. PRACTICAL EXAMPLE 

Consider the following example in order to illustrate the calculation of the Loss re-

serves using stochastical methods, named “Christofides method”.  

The example considers the incremental data of the Motor TPL insurance for an insur-

ance company from Republic of Moldova. The information that is needed is simply the 

triangle of the paid loss (the data are in '000 MDL). 

Incremental paid loss ('000 MDL) 

Incremental

0 1 2 3 4 5 6

2002 0 2062 1629 583 421 341 276 228

2003 1 2031 1706 643 448 335 307

2004 2 2164 1887 667 454 369

2005 3 2320 1860 671 463
2006 4 2462 1909 736

2007 5 2651 2158

2008 6 3084

Year of origin (i)
Development year (j)
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In accordance with the format development in the table, the origin year (i) are 

represented by the rows, and the development years (j) by the columns. Origin is taken as 

accident year, and these years are listed down the left hand side from 0 to 6 (the current 

year). The development years from 0 to 6 a listed along the top of the table – year 0 being 

the accident year itself in each case.  

We are standing at the end of the origin year 6, and using the Christofides method for 

establishing the reserves at this date. 

According the methods we shall to calculate the logarithm of the data from the pre-

vious table. Taking logarithms (natural logarithms will be assumed) gives: 

Log incremental paid loss 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure no. 1 Evolution of the loss (incremental data)
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mil. lei

2,002

2,003

2,004

2,005
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2,007

0 1 2 3 4 5 6

2002 0 7.63 7.40 6.37 6.04 5.83 5.62 5.43

2003 1 7.62 7.44 6.47 6.10 5.81 5.73

2004 2 7.68 7.54 6.50 6.12 5.91

2005 3 7.75 7.53 6.51 6.14

2006 4 7.81 7.55 6.60

2007 5 7.88 7.68

2008 6 8.03

Year of origin (i)
Development year (j)

Figure no. 2 Evolution of the loss (log data)
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The following table is in the form most convenient for the regression facility of any of 

the popular spreadsheet packages. 

 

Each row corresponds to a data value and its representation by the model parameters. 

Within the class of log-linear models changing the model just involves changing the 

design matrix. The spreadsheet regression command, which requires a column for the de-

pendent values and a range for the independent values (i.e. the design matrix) is then used to 

carry out the regression and output the result. It is necessary to specify that the fit is without 

a constant and to define results or output range. This is quite straightforward in practice and 

the results are produced almost instantly. 

 

 

 

 

 

 

 

 

 

 

 

 

I j ln(Yij) a0 a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6

0 0 7.63 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 7.40 1 0 0 0 0 0 0 1 0 0 0 0 0

0 2 6.37 1 0 0 0 0 0 0 0 1 0 0 0 0

0 3 6.04 1 0 0 0 0 0 0 0 0 1 0 0 0

0 4 5.83 1 0 0 0 0 0 0 0 0 0 1 0 0

0 5 5.62 1 0 0 0 0 0 0 0 0 0 0 1 0

0 6 5.43 1 0 0 0 0 0 0 0 0 0 0 0 1

1 0 7.62 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 7.44 0 1 0 0 0 0 0 1 0 0 0 0 0

1 2 6.47 0 1 0 0 0 0 0 0 1 0 0 0 0

1 3 6.10 0 1 0 0 0 0 0 0 0 1 0 0 0

1 4 5.81 0 1 0 0 0 0 0 0 0 0 1 0 0

1 5 5.73 0 1 0 0 0 0 0 0 0 0 0 1 0

2 0 7.68 0 0 1 0 0 0 0 0 0 0 0 0 0

2 1 7.54 0 0 1 0 0 0 0 1 0 0 0 0 0

2 2 6.50 0 0 1 0 0 0 0 0 1 0 0 0 0

2 3 6.12 0 0 1 0 0 0 0 0 0 1 0 0 0

2 4 5.91 0 0 1 0 0 0 0 0 0 0 1 0 0

3 0 7.75 0 0 0 1 0 0 0 0 0 0 0 0 0

3 1 7.53 0 0 0 1 0 0 0 1 0 0 0 0 0

3 2 6.51 0 0 0 1 0 0 0 0 1 0 0 0 0

3 3 6.14 0 0 0 1 0 0 0 0 0 1 0 0 0

4 0 7.81 0 0 0 0 1 0 0 0 0 0 0 0 0

4 1 7.55 0 0 0 0 1 0 0 1 0 0 0 0 0

4 2 6.60 0 0 0 0 1 0 0 0 1 0 0 0 0

5 0 7.88 0 0 0 0 0 1 0 0 0 0 0 0 0

5 1 7.68 0 0 0 0 0 1 0 1 0 0 0 0 0

6 0 8.03 0 0 0 0 0 0 1 0 0 0 0 0 0
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The spreadsheet output in this case will be: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The variances for the future values in log-space are the sum of the variance-covariance 

matrix values obtained above and the model variance σ
2
 (or s

2
 ).  

The following table shows the various values, especially the loss reserves and their va-

riances and standard errors. 

Calculating the variances or standard errors across accident years and in total requires 

one further step involving the covariances. 

SUMMARY OUTPUT

Multiple R 0.9997

R Square 0.9993

Adjusted R Square 0.9321

Standard Error 0.0297

Observations 28

ANOVA

df SS MS F Sign. F

Regression 13 19.51 1.5006 1699.68 0.0000

Residual 15 0.01 0.0009

Total 28 19.52

Coefficient

s

Standard 

Error
t Stat P-value

Intercept 0

a0 7.61 0.017 440.60 2.9268E-32

a1 7.65 0.017 443.31 2.6703E-32

a2 7.71 0.018 435.93 3.4348E-32

a3 7.73 0.018 417.77 6.5008E-32

a4 7.79 0.020 390.94 1.7598E-31

a5 7.88 0.023 347.32 1.0374E-30

a6 8.03 0.030 270.38 4.4364E-29

b1 -0.20 0.017 -11.93 4.6698E-09

b2 -1.21 0.018 -65.65 7.211E-20

b3 -1.57 0.020 -78.90 4.6128E-21

b4 -1.80 0.022 -81.52 2.827E-21

b5 -1.96 0.026 -75.78 8.4385E-21

b6 -2.18 0.034 -63.33 1.2348E-19

Regression Statistics

i j ai bi E(Yij) Var[E(Yij)] s^2 Var(Yij) Var(Yij)/2 Xij Var(Xij) SE(Xij) SE(Xij),%
1 2 3 4 5 6 7 8 9 10 11 12 13

1 6 7.65 -2.18 5.4760 0.0021 0.0009 0.0029 0.00147 239.2 168.7 13.0 5.4%

2 5 7.71 -1.96 5.7531 0.0016 0.0009 0.0025 0.00124 315.6 246.5 15.7 5.0%

2 6 7.71 -2.18 5.5322 0.0021 0.0009 0.0030 0.00149 253.1 191.6 13.8 5.5%

3 4 7.73 -1.80 5.9241 0.0015 0.0009 0.0024 0.00118 374.4 330.4 18.2 4.9%

3 5 7.73 -1.96 5.7720 0.0016 0.0009 0.0025 0.00127 321.6 262.1 16.2 5.0%

3 6 7.73 -2.18 5.5510 0.0022 0.0009 0.0030 0.00152 257.9 202.9 14.2 5.5%

4 3 7.79 -1.57 6.2196 0.0015 0.0009 0.0024 0.00118 503.1 596.6 24.4 4.9%

4 4 7.79 -1.80 5.9890 0.0016 0.0009 0.0024 0.00122 399.5 391.0 19.8 4.9%

4 5 7.79 -1.96 5.8369 0.0017 0.0009 0.0026 0.00131 343.2 309.3 17.6 5.1%

4 6 7.79 -2.18 5.6159 0.0023 0.0009 0.0031 0.00157 275.2 238.0 15.4 5.6%

5 2 7.88 -1.21 6.6744 0.0016 0.0009 0.0025 0.00124 792.8 1,555.9 39.4 5.0%

5 3 7.88 -1.57 6.3095 0.0016 0.0009 0.0025 0.00127 550.5 767.9 27.7 5.0%

5 4 7.88 -1.80 6.0790 0.0017 0.0009 0.0026 0.00131 437.1 501.9 22.4 5.1%

5 5 7.88 -1.96 5.9268 0.0019 0.0009 0.0028 0.00140 375.5 395.2 19.9 5.3%

5 6 7.88 -2.18 5.7059 0.0024 0.0009 0.0033 0.00166 301.1 301.0 17.4 5.8%

6 1 8.03 -0.20 7.8293 0.0021 0.0009 0.0029 0.00147 2,516.8 18,669.3 136.6 5.4%

6 2 8.03 -1.21 6.8262 0.0021 0.0009 0.0030 0.00149 923.1 2,548.9 50.5 5.5%

6 3 8.03 -1.57 6.4614 0.0022 0.0009 0.0030 0.00152 640.9 1,253.1 35.4 5.5%

6 4 8.03 -1.80 6.2308 0.0023 0.0009 0.0031 0.00157 508.9 814.1 28.5 5.6%

6 5 8.03 -1.96 6.0786 0.0024 0.0009 0.0033 0.00166 437.2 634.5 25.2 5.8%

6 6 8.03 -2.18 5.8577 0.0029 0.0009 0.0038 0.00191 350.6 471.6 21.7 6.2%

11,117.3 30,850 175.6 1.6%

Var 1

TOTAL
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The calculations are as in the previous example and can be tabulated easily to produce 

the following matrix of covariances. 

 
1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6

6 5 6 4 5 6 3 4 5 6 2 3 4 5 6 1 2 3 4 5 6

1 6 0 62 0 0 64 0 0 0 68 0 0 0 0 74 0 0 0 0 0 86

2 5 0 21 0 54 7 0 0 57 8 0 0 0 63 8 0 0 0 0 73 10

2 6 62 21 0 7 68 0 0 8 73 0 0 0 8 80 0 0 0 0 10 93

3 4 0 0 0 35 28 0 55 9 8 0 0 60 10 8 0 0 0 70 12 10

3 5 0 54 7 35 27 0 9 60 9 0 0 10 66 10 0 0 0 12 77 12

3 6 64 7 68 28 27 0 8 9 75 0 0 8 10 82 0 0 0 10 12 96

4 3 0 0 0 0 0 0 74 64 51 0 82 16 14 11 0 0 95 19 16 13

4 4 0 0 0 55 9 8 74 53 42 0 16 67 14 11 0 0 19 79 16 13

4 5 0 57 8 9 60 9 64 53 39 0 14 14 73 13 0 0 16 16 84 15

4 6 68 8 73 8 9 75 51 42 39 0 11 11 13 89 0 0 13 13 15 104

5 2 0 0 0 0 0 0 0 0 0 0 231 184 158 127 0 194 45 36 31 25

5 3 0 0 0 0 0 0 82 16 14 11 231 131 113 90 0 45 114 29 25 20

5 4 0 0 0 60 10 8 16 67 14 11 184 131 92 74 0 36 29 93 23 19

5 5 0 63 8 10 66 10 14 14 73 13 158 113 92 67 0 31 25 23 97 20

5 6 74 8 80 8 10 82 11 11 13 89 127 90 74 67 0 25 20 19 20 117

6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,394 1,662 1,320 1,134 909

6 2 0 0 0 0 0 0 0 0 0 0 194 45 36 31 25 2,394 618 491 422 338

6 3 0 0 0 0 0 0 95 19 16 13 45 114 29 25 20 1,662 618 346 297 238

6 4 0 0 0 70 12 10 19 79 16 13 36 29 93 23 19 1,320 491 346 240 192

6 5 0 73 10 12 77 12 16 16 84 15 31 25 23 97 20 1,134 422 297 240 170

6 6 86 10 93 10 12 96 13 13 15 104 25 20 19 20 117 909 338 238 192 170

I j

32,884Total Var2 =  
 

Note that the diagonal elements are left blank as the values here should be the 

variances which were estimated previously. The matrix is symmetric, as is to be expected, 

and so summing the range produces the sum of covariances of all possible pairs of values. 

This sum of all pairs of covariances is 32 884. 

The sum of the variances of the projected values obtained earlier was 30 850 and so the 

overall variance, which is the sum of these two values, is 63734. The overall standard error, 

which is the square root of this value, is therefore estimated as 252 or just 2,3% of the over-

all reserve estimate of 11 117 000 MDL. 

The table below summarizes the results. 

 

 

For comparison, in the table bellow show the chain ladder overall loss reserves estima-

tion. 

 

0 1 2 3 4 5 6

2002 0

2003 1 239

2004 2 316 253

2005 3 374 322 258

2006 4 503 400 343 275
2007 5 793 550 437 375 301

2008 6 2517 923 641 509 437 351

Oustanding Loss 11,117

Stahdard Error 252

Var, % 2.3%

Loss Reserves 11,533
probability, 95%

Year of origin (i)
Development year (j)
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Thus, the chain ladder overall estimate was 11 101 000 MDL. 

 

7. CONCLUSION 

The individual values obtained by the two methods are also close but the advantages of 

a stochastic model is that the basic chain ladder estimates are point estimates whereas the 

regression based estimates are statistical estimates with both a mean and a standard error es-

timate.  

All the usual information that can be produced from the traditional chain ladder can be 

derived from the regression chain ladder including estimates of development factors. 

The stochastic approach as shown above can produce additional information, based on 

the model assumptions, such as standard errors of parameters and reserve estimates, that the 

traditional approach does not. The statistical estimates obtained by the regression approach 

also facilitate stability comparisons across companies and classes. 

This completes our consideration of the regression chain ladder. The technique does 

not require that we have a complete triangle of data and can work with almost any shape da-

ta as long as there are sufficient points from which to obtain estimates of the parameters. 

 

 

 

 

 

 

 

Cumulative

0 1 2 3 4 5 6

2002 0 2062 3691 4274 4695 5036 5312 5540

2003 1 2031 3737 4380 4828 5163 5470

2004 2 2164 4051 4718 5172 5541

2005 3 2320 4180 4851 5314

2006 4 2462 4371 5107

2007 5 2651 4809

2008 6 3084

TOTAL j 16,774 24,839 23,330 20,009 15,740 10,782 5,540

TOTAL j-1 13,690 20,030 18,223 14,695 10,199 5,312

Factors 1.81 1.16 1.10 1.07 1.06 1.04

Cumul. Factors 2.74 1.51 1.30 1.18 1.10 1.04

Proportion of paid 55% 86% 91% 93% 95% 96%

Year of origin Paid to date

Cumulative 

factors

Ultimate 

Loss

Loss 

Reserves

2003 5,470 1.04 5,705 235

2004 5,541 1.10 6,109 568

2005 5,314 1.18 6,276 962

2006 5,107 1.30 6,622 1,515

2007 4,809 1.51 7,263 2,454

2008 3,084 2.74 8,451 5,367

TOTAL 11,101

Year of origin (i)
Development year
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